精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AD∥BC,AB=CD=BC=6,AD=3.点M为边BC的中点,以M为顶点作∠EMF=∠B,射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF.
(1)求证:△MEF∽△BEM;
(2)若△BEM是以BM为腰的等腰三角形,求EF的长;
(3)若EF⊥CD,求BE的长.
分析:(1)先根据已知条件判断出梯形ABCD是等腰梯形,由等腰梯形的性质可得出△MEF∽△MFC,由相似三角形的性质及判定定理可得出△MEF∽△BEM;
(2)由(1)可知△MEF∽△BEM,BM=BF=3=MC,则△MEF≌△FMC,由全等三角形的对应边相等可得出EF的长;同理,若BM=BM=3=MC,则△MEF≌△FMC,由全等三角形的对应边相等可得出EF的长;
(3)根据EF⊥CD,△MEF∽△BEM可求出∠MFE=∠MFC=∠BME=45°,设BE=x,则BH=
1
4
x
,EH=MH=
15
4
x
,由MH+BH=3即可求出答案.
解答:证明:(1)在梯形ABCD中,
∵AD∥BC,AB=CD,
∴∠B=∠C,(1分)
∵∠BMF=∠EMB+∠EMF=∠C+∠MFC,
又∵∠EMF=∠B,
∴∠EMB=∠MFC,(1分)
∴△EMB∽△MFC,
EB
EM
=
MC
MF
,(1分)
∵MC=MB,
EB
EM
=
MB
MF

又∵∠EMF=∠B,
∴△MEF∽△BEM;(1分)

(2)精英家教网解:若△BEM是以BM为腰的等腰三角形,则有两种情况:
①BM=ME,那么根据△MEF∽△BEM,
EF
ME
=
MF
BM

BM
ME
=
MF
EF
,即EF=MF
根据第(1)问中已证△BME∽△MFC,
BM
ME
=
MF
FC
,即MF=FC,
∴∠FMC=∠C,
又∵∠B=∠C,
∴∠FMC=∠B,
∴MF∥AB
延长BA和CD相交于点G,又点M是BC的中点,
∴MF是△GBC的中位线,
∴MF=
1
2
GB,
又∵AD∥BC,
∴△GAD∽△GBC,
AG
GB
=
AD
BC
=
3
6
=
1
2

AB
AG
=1,即AG=AB=6,
∴GB=12,
∴MF=EF=6
②BM=BE=3,
∴点E是AB的中点,又△MEF∽△BEM,
BM
BE
=
MF
ME
=1,即MF=ME,
∴EF是梯形ABCD的中位线,
∴EF=
1
2
(AD+BC)=
1
2
(3+6)=
9
2


(3)∵EF⊥CD,
∴∠EFC=90°,△MEF∽△BEM,∠MFE=∠MFC=∠BME=45°,
解一:过点E作EH⊥BC,则可得△EHM等腰直角三角形,
故EH=MH,
设BE=x,则BH=
1
4
x
,EH=MH=
15
4
x

15
4
x+
1
4
x=3

∴BE=x=
6
7
(
15
-1)
(2分)
解二:过点M作MN⊥DC,MC=3,NC=
3
4
.MN=
3
4
15
=FN,FC=
3
4
(
15
+1)
-2
由△MEF∽△MFC有
EB
BM
=
MC
CF

EB
3
=
3
3
4
(
15
+1)

得BE=
6
7
(
15
-1)
点评:本题考查的是等腰梯形的性质、相似三角形的判定与性质、全等三角形的判定与性质,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案