精英家教网 > 初中数学 > 题目详情

△ABC中,直线AH与BC交于点D,BE⊥AD于点E,CF⊥AD于点F,且BE=CF,说明AD是△ABC的中线.

解:∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,
在△BDE和△CDF中,

∴△BDE≌△CDF,
∴BD=CD.
∴AD是△ABC的中线.
分析:根据已知BE⊥AD,CF⊥AD,得出∠BED=∠CFD=90°,即可证出△BDE和△CDF全等,从而得出AD是△ABC的中线.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要根据实际情况灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•河北)如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=
513

探究:如图1,AH⊥BC于点H,则AH=
12
12
,AC=
15
15
,△ABC的面积S△ABC=
84
84

拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为S△ABD=0)
(1)用含x,m,n的代数式表示S△ABD及S△CBD
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的求值范围.
发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江阴市模拟)如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=
513

探究  如图1,AH⊥BC于点H,则AH=
12
12
,AC=
15
15
,△ABC的面积S△ABC=
84
84

拓展  如图2,点D在AC上(可以与点A、C重合),分别过点A,C作直线BD的垂线,垂足为E、F,设BD=x,AE=m,CF=n,
(1)用含x,m或n的代数式表示S△ABD及S△CBD
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.
发现  请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并直接写出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)求证:△ACD≌△BCD;
(2)求∠A;
(3)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;
(4)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC中,直线AH与BC交于点D,BE⊥AD于点E,CF⊥AD于点F,且BE=CF,说明AD是△ABC的中线.

查看答案和解析>>

同步练习册答案