精英家教网 > 初中数学 > 题目详情
如图(1)至图(5),⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c。
阅读理解:
(1)如图(1),⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周。
(2)如图(2),∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周。
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转周;若AB=l,则⊙O自转____周;
在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转____周;
若∠ABC=60°,则⊙O在点B处自转____周;
(2)如图(3),∠ABC=90°,AB=BC=c,⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,则⊙O自转____周;
拓展联想:
(1)如图(4),△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图(5),多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数。

解:实践应用:
(1)2,
(2)
拓展联想:
(1)∵△ABC的周长为l,
∴⊙O在三边上自转了周,
又∵三角形的外角和是360°,
∴在三个顶点处,⊙O自转了(周),
∴⊙O共自转了周;
(2)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)至图(3),C为定线段AB外一动点,以AC、BC为边分别向外侧作正方形CADF和正方形CBEG,分别作DD1⊥AB、EE1⊥AB,垂足分别为D1、E1.当C的位置在直线AB的同侧变化过程中,
(1)如图(1),当∠ACB=90°,AC=4,BC=3时,求DD1+EE1的值;
(2)求证:不论C的位置在直线AB的同侧怎样变化,DD1+EE1的值为定值;
(3)求证:不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛)如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.
(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.
(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个
结论是否成立,若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图2)量得它们的斜边长为10cm,较小锐角为30°再将这两张三角形纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示).

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决.

1.(1)将图3中的△ABC沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;

2.(2)将图3中的△ABC绕点F顺时针方向旋转30°到图5的位置,A1F交DE于G,若DG=kEG,求k的值;

3.(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.

 

查看答案和解析>>

科目:初中数学 来源:2011年重庆市石柱县九年级期末考试数学卷 题型:解答题

如图1,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图2)量得它们的斜边长为10cm,较小锐角为30°再将这两张三角形纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示).

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决.

1.(1)将图3中的△ABC沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;

2.(2)将图3中的△ABC绕点F顺时针方向旋转30°到图5的位置,A1F交DE于G,若DG=kEG,求k的值;

3.(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.

 

查看答案和解析>>

科目:初中数学 来源:2011年辽宁省葫芦岛市中考数学试卷(解析版) 题型:解答题

如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.
(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.
(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个______结论是否成立,若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案