精英家教网 > 初中数学 > 题目详情
阅读下列材料:
我们已经学过整式的加减,知道进行整式的加减的关键就是各同类项系数的加减.因此我们可以用竖式计算.
例如,计算(2x3﹣x2+x)+(﹣x+x2+1)时,我们可以用下列竖式计算:

解:∵(2x3﹣x2+x)+(﹣x+x2+1)
=2x3+1.
请你仿照上例,计算下列各题.
(1)(a2﹣2a﹣2)+(3a﹣1);
(2)(3a2b﹣ab2﹣c)+(ab2+3c﹣a2b)﹣(c+2a2b﹣5ab2).
解:(1)

故原式=a2+a﹣3.
(2)原式可化为:(3a2b﹣ab2﹣c)+(﹣a2b+ab2+3c)+(﹣2a2b+5ab2﹣c).

故原式=a2b+5ab2+3c.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
我们已经学过整式的加减,知道进行整式的加减的关键就是各同类项系数的加减.因此我们可以用竖式计算.
例如,计算(2x3-x2+x)+(-x+x2+1)时,我们可以用下列竖式计算:
精英家教网
解:∴(2x3-x2+x)+(-x+x2+1)
=2x3+1.
请你仿照上例,计算下列各题.
(1)(a2-2a-2)+(3a-1);
(2)(3a2b-ab2-c)+(ab2+3c-
12
a2b)-(c+2a2b-5ab2).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

31、阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1-x2|表示在数轴上x1,x2对应点之间的距离;
例1.已知|x|=2,求x的值.
解:容易看出,在数轴上与原点距离为2点的对应数为-2和2,
即x的值为-2和2.
例2.已知|x-1|=2,求x的值.
解:在数轴上与1的距离为2点的对应数为3和-1,
即x的值为3和-1.
仿照阅读材料的解法,求下列各式中x的值.
(1)|x|=3
(2)|x+2|=4.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•郴州)阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求点P(1,2)到直线y=
5
12
x-
1
6
的距离d时,先将y=
5
12
x-
1
6
化为5x-12y-2=0,再由上述距离公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列问题:
    如图2,已知直线y=-
4
3
x-4
与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:我们在学习二次根式时,式子
x
有意义,则x≥0;式子
-x
有意义,则x≤0;若式子
x
+
-x
有意义,求x的取值范围;这个问题可以转化为不等式组来解决,即求关于x的不等式组
x≥0
-x≤0
的解集,解这个不等式组得x=0.请你运用上述的数学方法解决下列问题:
(1)式子
x2-1
+
1-x2
有意义,求x的取值范围;
(2)已知:y=
x-2
+
2-x
-3
,求xy的值.

查看答案和解析>>

同步练习册答案