如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连结BF。
1.求证:△ADE≌△FCE;
2.若AC=BC,试判断四边形BDCF的形状,并证明你的结论。
![]()
1.证明:(1)∵CF∥AB ∴∠EAD=∠EFC ……………………………… 2分
又∵∠AED=∠FEC ,DE=CE ………………………………………… 3分
∴△ADE≌△FCE(AAS) …………………………………………… 4分
2.四边形BDCF是矩形 …………………………………………… 5分
由(1)得 CF=AD
又∵AD=BD,
∴CF=DB ……………………………………………… 6分
∵CF∥AB
∴四边形BDCF是平行四边形 ……………………… 8分
∵AC=BC
∴CD⊥AB …………………………………………… 9分
∴平行四边形BDCF是矩形 ………………………………………… 10分
解析:(1)先由CF∥AB,可证∠EAD=∠EFC,而∠AED=∠FEC ,DE=CE,利用AAS可证△△ADE≌△FCE,
(2)四边形BDCF是矩形.先证得四边形BDCF是平行四边形,又CB=AC,AD=DB,利用等腰三角形三线合一定理,可知CD⊥AB,即∠ADC=90°,那么可证四边形BDCF是矩形.
科目:初中数学 来源: 题型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com