精英家教网 > 初中数学 > 题目详情
精英家教网如图,在y=
1
x
(x>0)的图象上有三点A,B,C,过这三点分别向x轴引垂线,交x轴于A1,B1,C1三点,连OA,OB,OC,设△OAA1,△OBB1,△OCC1的面积分别为S1,S2,S3,则有(  )
A、S1=S2=S3
B、S1<S2<S3
C、S3<S1<S2
D、S1>S2>S3
分析:由于A,B,C是反比例函数y=
1
x
的图象上的三点,根据反比例函数比例系数k的几何意义,可知图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=
1
2
|k|,是个恒等值,即可得出结果.
解答:解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=
1
2
|k|,
所以S1=S2=S3
故选A.
点评:主要考查了反比例函数y=
k
x
中k的几何意义,图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=
1
2
|k|.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网(1)先化简,再求值:
2x+4
x2-4x+4
×
x-2
x2+2x
-
1
x-2
,其中x=2
3

(2)如图,在平面直角坐标系中,已知⊙A的圆心坐标为(6,5).
①画图:以坐标原点O为位似中心在⊙A的同侧作出⊙A的位似图形⊙B,使得⊙B与⊙A的相似比为1:2;
②写出点B的坐标,并判断⊙B与⊙A的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邯郸一模)如图,在直角坐标系中,正方形OABC是由四个边长为1的小正方形组成的,反比例函数y1=
k1
x
(x>0)
过正方形OABC的中心E,反比例函数y2=
k2
x
(x>0)
过AB的中点D,两个函数分别交BC于点N,M,有下列四个结论:
①双曲线y1的解析式为y1=
1
x
(x>0)

②两个函数图象在第一象限内一定会有交点;
③MC=2NC;
④反比例函数y2的图象可以是看成是由反比例函数y1的图象向上平移一个单位得到
其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北京)如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线y=
1
x
,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,…记点An的横坐标为an,若a1=2,则a2=
-
3
2
-
3
2
,a2013=
-
1
3
-
1
3
;若要将上述操作无限次地进行下去,则a1不可能取的值是
0、-1
0、-1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在第一象限内,双曲线y=
6
x
上有一动点B,过点B作直线BC∥y轴,交双曲线y=
1
x
于点C,作直线BA∥x轴,交双曲线y=
1
x
于点A,过点C作直线CD∥x轴,交双曲线y=
6
x
于点D,连接AC、BD.
(1)当B点的横坐标为2时,①求A、B、C、D四点的坐标;②求直线BD的解析式;
(2)B点在运动过程中,梯形ACDB的面积会不会变化?如会变化,请说明理由;如果不会变化,求出它的固定值.

查看答案和解析>>

同步练习册答案