精英家教网 > 初中数学 > 题目详情
15..已知三角形的三边长分别是a、b、c,且a>c,那么|c-a|-$\sqrt{(a+c-b)^{2}}$=b-2c.

分析 根据题意判断c-a的符号,根据三角形的三边关系,判断a+c-b的符号,根据二次根式的性质化简、合并同类项即可得到答案.

解答 解:∵a>c,∴c-a<0,
∵a、b、c分别是三角形的三边长,∴a+c-b>0,
∴|c-a|-$\sqrt{(a+c-b)^{2}}$=a-c-a-c+b=b-2c,
故答案为:b-2c.

点评 本题考查的是三角形的三边关系和二次根式的性质,掌握任意两边之和大于第三边,任意两边之差小于第三边和二次根式的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.一组数:8,9,7,10,6,9,9,6,则这组数的中位数与众数的和是(  )
A.16.5B.17C.17.5D.18

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.
 小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC是平分线AB1折叠,则等腰三角形的两个点B与点C重合(因为等腰三角形的两个底角是相等的);情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是(填“是”或“不是”)
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系,写出探究过程.
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系是∠B=n∠C.
应用提升
(3)在三个角都不相等的三角形中,小丽找到一个三角形,三个角分别为4°,16°,160°,发现此三角形的三个角都是好角.你能尝试再构造两组三个角都不相等,并且都是好角的三角形吗?写出具体角度即可.
①4°,8°,168°;        ②18°,54°,108°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列各数中:0、-$\sqrt{2}$、$\root{3}{8}$、$\frac{5}{13}$、π、0.3737737773…(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:$\sqrt{(1-\sqrt{3})^{2}}$×(-$\sqrt{3}$)2×$\sqrt{6}$÷$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解下列不等式,并把它们的解集在数轴上表示出来
(1)3(1-x)≥2(x+9);                
(2)1-$\frac{2-3x}{5}$>$\frac{1+x}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=30°.现将△ADE沿DE折叠,点A落在三角形所在平面内的点为A′,则∠BDA′的度数为(  )
A.100°B.120°C.130°D.140°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,EA是⊙O的切线.若∠EAC=120°,则∠ABC的度数是(  )
A.80°B.70°C.60°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.我们已经知道函数y=$\frac{1}{x}$与y=-$\frac{1}{x}$的两个图象之间的联系与区别,那你知道函数y=$\frac{1}{|x|}$的图象与上述两个函数图象之间又有怎样的关系吗?
(1)试用描点法画出图象加以探究;
(2)如果利用y=$\frac{1}{|x|}$与y=$\frac{1}{x}$或y=-$\frac{1}{x}$的图象之间的关系,可怎样画y=-$\frac{2}{|x|}$的图象?

查看答案和解析>>

同步练习册答案