| A. | CH=BE | B. | CE=EF | C. | AC=AF | D. | ∠ACD=∠B |
分析 根据角平分线求出CE=EF,∠CAE=∠BAE,根据三角形内角和定理求出∠B=∠ACD,根据三角形外角性质求出∠CHE=∠CEH,根据等腰三角形性质推出CH=CE,根据勾股定理求出AC=AF,即可得出选项.
解答 解:D、∵CD⊥AB,
∴∠ADC=∠ACB=90°,
∴∠CAD+∠ACD=90°,∠B+∠CAB=90°,
∴∠ACD=∠B,正确,故本选项错误;
B、∵AE平分∠CAB,∠ACB=90°,EF⊥AB,
∴CE=EF,
∵AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠B=∠ACD,
∴∠ACD+∠CAE=∠B+∠BAE,
即∠CHE=∠CEH,
∴CH=CE=EF,正确,故本选项错误;
A、CH=EF<BE,错误,故本选项正确;
C、在Rt△ACE和Rt△AFE中,AE=AE,CE=EF,由勾股定理得:AC=AF,正确,故本选项错误;
故选A.
点评 本题考查了等腰三角形性质,角平分线性质,勾股定理,三角形内角和定理的应用,注意:角平分线上的点到角两边的距离相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 每台投影仪的使用寿命 | B. | 一批投影仪的使用寿命 | ||
| C. | 40台投影仪的使用寿命 | D. | 40 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com