精英家教网 > 初中数学 > 题目详情
关于x的一元二次方程(k-4)x2-2x-1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)当k是怎样的正整数方程没有实数根?
分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2-4ac>0,建立关于k的不等式,求出k的取值范围即可,在解题时要注意二次项系数不能为0即k≠4;
(2)有根的判别式△=b2-4ac<0,求出k的取值范围,再找到符合题意k的值即可.
解答:解:(1)∵一元二次方程(k-4)x2-2x-1=0有两个不相等的实数根,
∴△=b2-4ac=(-2)2-4(k-4)×(-1)>0,
∴解得:k>3,
∵k-4≠0,
∴k≠4,
∴k>3且k≠4;

(2)若方程没有实数根,则△=b2-4ac<0,
即:4k-12<0,
解得:k<3,
∴当k取1或2时的正整数时方程没有实数根.
点评:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•北仑区二模)若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是关于x的一元二次方程,则m=
65
2
65
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是
a<4
a<4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:
已知x1,x2是一员二次方程(m-3)x2+2mx+m=0的两个实数根.
(1)是否存在实数m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,请你说明理由;
(2)若|x1-x2|=
3
,求m的值和此时方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案