精英家教网 > 初中数学 > 题目详情
1.如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠ABD=∠ACD.

分析 只需证明△ACB与△DBC全等即可.

解答 证明:∵AC⊥CB,DB⊥CB,
∴△ACB与△DBC均为直角三角形,
在Rt△ACB与Rt△DBC中,
$\left\{\begin{array}{l}{AB=DC}\\{CB=BC}\end{array}\right.$,
∴Rt△ACB≌Rt△DBC(HL),
∴∠ABC=∠DCB,
∴∠ACB-∠DCB=∠DBC-∠ABC,
即:∠ABD=∠ACD.

点评 本题考查全等全角三角形的判定与性质,是基础题.注意本题是对两个直角三角形全等的判定,熟悉“HL”定理是解答的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.把下列各数填在相应的大括号里:
+2,-|-2|,-3,0,-3$\frac{1}{2}$,-1.414,17,$\frac{2}{3}$,(-1)2
正整数:{                                 }
整数:{                                 }
负分数:{                                 }
正有理数:{                                 }.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.将一张长方形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.
(1)求∠1的度数;
(2)求证:△GEF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1
(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0
(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1
(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1
综上所述,可得表①
n3456
m1011
探究二:
(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三
角形?(只需把结果填在表②中)
n78910
m
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…
解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设n分别等于4k-1、4k、4k+1、4k+2,其中k是整数,把结果填在表 ③中)
n4k-14k4k+14k+2
m
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)
其中面积最大的等腰三角形每个腰用了672根木棒.(只填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:
①b2-4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有两个不同根x1、x2,且(x1-1)(1-x2)>0;
④二次函数的图象与坐标轴有三个不同交点,
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,△ABC中,BC=1.若AD1=$\frac{1}{3}$AB,且D1E1∥BC,则D1E1=$\frac{1}{3}$;照这样继续下去,D1D2=$\frac{1}{3}$D1B,且D2E2∥BC;D2D3=$\frac{1}{3}$D2B,且D3E3∥BC;…;Dn-1Dn=$\frac{1}{3}$Dn-1B,且DnEn∥BC,则DnEn=1-($\frac{2}{3}$)n(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.数轴上在表示数-1的点,且与其相距3个单位长度的点所对应的实数为-4或2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC,∠BAC=50°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=12,求$\widehat{AD}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简,再求值:2(3x2y+4xy2)-(5x2y+2xy2),其中x=-2,y=1.

查看答案和解析>>

同步练习册答案