精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AD是弦,点E是弧BD上一点,EF⊥AD于点F,且EF是⊙O的切线.
(1)求证:弧DE=弧BE;
(2)连接BE,若tan∠DAB=
125
,求tan∠B的值.
分析:(1)如图,连接OD、OE.欲证明弧DE=弧BE,只需证明∠5=∠4;
(2)连接BD,AE,根据直角△ABD中,tan∠DAB=
BD
AD
=
12
5
,可以设BD=12a,则AD=5a,根据弧DE=弧BE,可以得到OE垂直平分BD,则在直角△OMB中,利用勾股定理即可求得OM,然后在直角△BEM中,利用勾股定理求得BE的长,在直角△ABE中利用勾股定理求得AE的长,然后根据正切函数的定义即可求解.
解答:解:(1)如图,连接OD、OE.
∵OA=OD,
∴∠1=∠2.
∵AB是⊙O的直径,EF是⊙O的切线,
∴OE⊥EF.
又∵EF⊥AD于点F,
∴AF∥OE,
∴∠1=∠5,∠2=∠4,
∴∠5=∠4,
∴弧DE=弧BE;

(2)连接BD,AE,
∵AB是圆的直径,
∴∠ADB=90°,
∵直角△ABD中,tan∠DAB=
BD
AD
=
12
5

∴设BD=12a,则AD=5a,
则直径AB=
AD2+BD2
=13a,
∵弧DE=弧BE;
∴BM=
1
2
BD=6a,OE⊥BD,
∴在直角△ONM中,OM=
OB2-BM2
=
(6.5a)2-(6a)2
=
5
2
a,
∴ME=OE-OM=6.5a-
5
2
a=4a,
在直角△BEM中,BE=
ME2+MB2
=
(4a)2+(6a)2
=2
13
a,
在直角△ABE中,AE=
AB2-BE2
=
(13a)2-52a2
=
117
a,
∴tan∠B=
AE
BE
=
117
a
2
13
a
=
3
2
点评:本题考查了切线的性质,圆周角定理以及勾股定理,三角函数,正确理解三角函数的定义,作出辅助线是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案