【题目】如图,已知中,,,点为的中点,如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.
(1)若点与点的运动速度相等,经过1秒后,与是否全等?请说明理由;
(2)若点与点的运动速度不相等,当点的运动速度为多少时,能使与全等?
【答案】(1)全等;(2)不相等,当点的运动速度为时,能使与全等.
【解析】
(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP;
(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.
解:(1)全等.理由如下:
中,,
,
由题意可知,,
经过1秒后,,,,
在和中,
,
;
(2)设点的运动速度为,经过与全等,
则可知,,
,
,
根据全等三角形的判定定理可知,有两种情况:
①当,时,且,
解得,,
,
∴舍去此情况;
②当,时,且,
解得,,
故若点与点的运动速度不相等,
则当点的运动速度为时,能使与全等.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③4a-2b+c<0.其中正确的有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CN是等边△的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若,求的大小(用含的式子表示);
(3)用等式表示线段, 与之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB分别与x轴、y轴交于点B、C,与直线OA交于点A.已知点A的坐标为(﹣3,5),OC=4.
(1)分别求出直线AB、AO的解析式;
(2)求△ABO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO;⑤S△AOC+S△AOB=.其中正确的结论是( )
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:
(1)图中的a= ,b= .
(2)求S关于x的函数关系式.
(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.
(1)若直线AB解析式为,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作的平分线ON,若AB⊥ON,垂足为E, OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.
(1)求证:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数.②若⊙O的半径为,求线段EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com