分析 连接AC,过F作FG⊥AC于G,EH⊥AC于H,于是得到FAG=∠EAB,由于∠AGF=∠B=90°,推出△FAG∽△EAB,同理△FDA∽△EHA,根据相似三角形的性质得到GF•HE=DF•BE,由于GF=$\frac{\sqrt{2}}{2}$CF,HE=$\frac{\sqrt{2}}{2}$即可得到结论.
解答
证明:连接AC,过F作FG⊥AC于G,EH⊥AC于H,
∴∠FAG+∠HAE=45°,∠EAB+∠HAE=45°,
∴∠FAG=∠EAB,
∵∠AGF=∠B=90°,
∴△FAG∽△EAB,
同理△FDA∽△EHA,
∴$\frac{GF}{BE}=\frac{AF}{AE}$,$\frac{DF}{HE}=\frac{AF}{AE}$,
∴$\frac{GF}{BE}=\frac{DF}{HE}$,
∴GF•HE=DF•BE,
∵GF=$\frac{\sqrt{2}}{2}$CF,HE=$\frac{\sqrt{2}}{2}$CE,
∴$\frac{\sqrt{2}}{2}CF•\frac{\sqrt{2}}{2}CE$=DF•BE,
∴CE•CF=2BE•DF.
点评 本题考查正方形的性质、相似三角形的判定及其性质为解题的关键是作辅助线,构造相似三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AB=CB | B. | ∠B=∠D | C. | AB∥CD | D. | ∠A+∠B=180° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com