精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,E是BC上一点,且BE:EC=1:4,AE⊥DE,则AB:BC=________.

2:5
分析:根据题意可得出△ABE∽△ECD,则=,设BE=x,则EC=4x,从而得出AB=CD=2x,再求比值即可.
解答:∵∠B=∠C=90°,
∴∠BAE+∠AEB=90°,
∵AE⊥DE,
∴∠AEB+∠CED=90°,
∴∠BAE=∠CED,
∴△ABE∽△ECD,
=
设BE=x,
∵BE:EC=1:4,
∴EC=4x,
∴AB•CD=x•4x,
∴AB=CD=2x,
∴AB:BC=2x:5x=2:5.
故答案为2:5.
点评:本题考查了相似三角形的判定和性质以及矩形的性质,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案