精英家教网 > 初中数学 > 题目详情
问题:你能比较20092010和20102009的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n为正整数),我们从n=1,n=2,n=3…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.
(1)通过计算,比较下列各组数字大小
①12______21②23______32③34______43
④45______54⑤54______65⑥67______76

(2)把第(1)题的结果经过归纳,你能得出什么结论?
(3)根据上面的归纳猜想得到的结论,试比较两个数的大小:
20092010______20102009(填“>”、“<”或“=”)
【答案】分析:(1)通过计算即可得出答案,(2)分类进行讨论:当n≤2时,nn+1<(n+1)n,当n>2时,nn+1>(n+1)n,(3)根据规律进行比较即可.
解答:解:(1)通过计算得出:12<21,23<32,34>43,45>54,54>65,67>76
(2)把第(1)题的结果经过归纳得出:
当n≤2时,nn+1<(n+1)n
当n>2时,nn+1>(n+1)n
(3)根据以上结论得出:20092010>20102009
故答案为20092010>20102009
点评:本题考查了有理数的乘方和有理数大小比较,解题的关键是通过计算发现规律,然后根据规律进行判断就容易了.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、问题:你能比较20092010和20102009的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n为正整数),我们从n=1,n=2,n=3…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.
(1)通过计算,比较下列各组数字大小
①12
21②23
32③34
43
④45
54⑤54
65⑥67
76

(2)把第(1)题的结果经过归纳,你能得出什么结论?
(3)根据上面的归纳猜想得到的结论,试比较两个数的大小:
20092010
20102009(填“>”、“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

18、问题:你能比较20052006和20062005的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n为正整数),我们从n=1,n=2,n=3…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.
(1)通过计算,比较下列各组数字大小
①12
21  ②23
32 ③34
43
④45
54     ⑤56
65      ⑥67
76

(2)根据上面的归纳猜想得到的结论,试比较下列两个数的大小  20052006
20062005(填”>”,”<”,“=”)
(3)把第(1)题的结果经过归纳,你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

(一)问题:你能比较两个数20092010和20102009的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出他的一般形式,即比较nn+1和(n+1)n的大小(n为自然数),然后我们分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组数的大小:
①12
 
21;②23
 
32;③34
 
43;④45
 
54;⑤56
 
65
(2)从第(1)题的结果经过归纳,可以猜想出nn+1
 
(n+1)n(n≥3)
(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:
①20092010
 
20102009;②-20092010
 
-20102009
(二)请比较大小:
231981+1
231982+1
 
231982+1
231983+1
,并写出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20062007与20072006的大小吗?为了解决问题,首先把它抽象成数学问题,写出它的一般形式,即比较nn+1与(n+1)n的大小(n是正整数),然后,从分析n=1,n=2,n=3,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(填“>”,“<”,“=”)
①12
21; ②23
32;③34
43;④45
54;⑤56
65; …
(2)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:20062007
20072006
(3)从第(1)题的结果经过归纳,可以猜想出nn+1与(n+1)n的大小关系是
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较20112012和20122011的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的-般形式,即比较nn+1和(n+1)n的大小(n是正整数),然后,我们从分析n=1,n=2,n=3,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(填“<”“>”或“=”):
①12
21;②23
32;③34
43
④45
54;⑤56
65;…
(2)将题(1)的结果进行归纳,可以猜想出nn+1和(n+1)n的大小关系是
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n

(3)根据上面归纳猜想后得到的一般结论,试比较下列两个数的大小:20112012
20122011

查看答案和解析>>

同步练习册答案