精英家教网 > 初中数学 > 题目详情

为了求1+22+23+…+22008的值,可令S=1+22+23+…+22008,则2S=22+23+24+…+22009,因此2S-S=22009-1,所以1+22+23+…+22008=22009-1仿照以上推理计算出1+52+53+…+52009的值是

[  ]

A.52009-1

B.52010-1

C.

D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+5+52+53+…+52009的值是(  )
A、52009-1
B、52010-1
C、
52009-1
4
D、
52010-1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

为了求1+2+22+23+…+22008+22009的值,可令S=1+2+22+23+…+22008+22009,则2S=2+22+23+24+…+22008+22009+22010,因此2S-S=22010+1,所以1+2+22+23+…+22008=22010+1.仿照以上推理计算出1+5+52+53+…52009的值是(  )
A、52010+1
B、52010-1
C、
52010+4
4
D、
52010+1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

为了求1+2+22+23+…+22008+22009的值,可令S=1+2+22+23+…+22008+22009,则2S=2+22+23+24+…+22009+22010,因此2S-S=22010+1,所以1+22+23+…+22008=22010+1仿照以上推理计算出1+5+52+53+…+52009的值是
52010-1
4
52010-1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

为了求1+2+22+…+22009的值,可令s=1+2+22+…+22009,则2s=2+22+23+24+…+22010,因此2s-s=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理计算出1+7+72+73+…72010的值(  )

查看答案和解析>>

同步练习册答案