精英家教网 > 初中数学 > 题目详情
如图,平面直角坐标系中,矩形OABC的顶点O在原点,点A在x轴的正半轴上,点C在y轴精英家教网的正半轴上.已知OA=8,OC=6,E是AB的中点,F是BC的中点.
(1)分别写出点E、点F的坐标;
(2)过点E作ME⊥EF交x轴于点M,求点M的坐标;
(3)在线段OC上是否存在点P,使得以点P、E、F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)根据四边形OABC是矩形,OA=8,OC=6,E是AB的中点,F是BC的中点即可求出点E、点F的坐标;
(2)先利用相似三角形的性质求出△AEM∽△BFE,再由相似三角形的对应边成比例可求出AM的长,再根据OA=8即可求出OM的长,进而可求出M点的坐标;
(3)设P(0,n),过点P作PH⊥AB于点H,利用勾股定理可求出PF、PE、EF的长,再分PF=PE、PE=EF、PF=EF三种情况,列出方程求出n的值即可.
解答:解:(1)∵四边形OABC是矩形,OA=8,OC=6,E是AB的中点,F是BC的中点,
∴E(8,3),F(4,6); (3分)

(2)∵ME⊥EF,
∴∠BEF+∠AEM=90°,
∵∠BEF+∠BFE=90°,
∴∠AEM=∠BFE,
又∵∠EAM=∠B=90°,
∴△AEM∽△BFE,(5分)
AM
BE
=
AE
BF

AM
3
=
3
4

AM=
9
4
,(7分)
OM=OA-AM=5
3
4

∴M(5
3
4
,0);(9分)

(3)如图,设P(0,n),精英家教网
过点P作PH⊥AB于点H,
在Rt△CPF中,PF2=CF2+CP2=42+(6-n)2
在Rt△EPH中,PE2=PH2+EH2=82+(3-n)2
在Rt△BEF中,EF2=BE2+BF2=25,
①当PE=PF时PE2=PF2
即82+(3-n)2=42+(6-n)2
解得n=-
7
2
(不合题意,舍去); (10分)
②当PE=EF时PE2=EF2
即82+(3-n)2=25,此方程无解; (11分)
③当PF=EF时PF2=EF2
即42+(6-n)2=25,
解得n1=3,n2=9(不合题意,舍去),(12分)
综上,存在点P(0,3),此时△PEF是等腰三角形.(13分)
故答案为:E(8,3),F(4,6); M(5
3
4
,0);-
7
2
、3、9.
点评:本题考查的是相似三角形的判定与性质、等腰三角形的性质及矩形的性质,涉及面较广,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平面直角坐标系中,O为直角三角形ABC的直角顶点,∠B=30°,锐角顶点A在双曲线y=
1x
上运动,则B点在函数解析式
 
上运动.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB精英家教网=2
3

(1)求⊙P的半径.
(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,则点O的对应点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足
a+2
+|b-2|+(c-b)2=0
.点D为线段OA上一动点,连接CD.
(1)判断△ABC的形状并说明理由;
(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:
S△CAD
S△DGH
=
AD
GH

(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案