精英家教网 > 初中数学 > 题目详情
已知平面直角坐标系内A、B两点的坐标分别为A(0,0)和B(2,2),现有四张正面分别标有数字-2,0,2,4的不透明卡片,它们除了数字不同外其余全部相同.先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数记为x,将卡片放回后从中再取一张,将该卡片上的数字记为y,记P点的坐标为P(x,y),则以P、A、B三点所构成的三角形为等腰直角三角形的概率为
 
考点:列表法与树状图法,坐标与图形性质,等腰直角三角形
专题:计算题
分析:列表得出所有等可能的情况数,找出以P、A、B三点所构成的三角形为等腰直角三角形的情况数,即可求出所求的概率.
解答:解:列表如下:
-2024
-2(-2,-2)(0,-2)(2,-2)(4,-2)
0(-2,0)(0,0)(2,0)(4,0)
2(-2,2)(0,2)(2,2)(4,2)
4(-2,4)(0,4)(2,4)(4,4)
得到所有等可能的情况数有16种,其中以P、A、B三点所构成的三角形为等腰直角三角形有6种,分别为(2,-2),(2,0),(4,0),(-2,2),(0,2),(0,4),当p为(-2.-2)(0.0)(2.2)(4.4)与A,B不成为三角形.所P、A、B三点所构成的三角形为等腰直角三角形的概率为:P=
6
16
=
3
8

故答案为:
3
8
点评:此题考查了列表法与树状图法,坐标与图形性质,以及等腰直角三角形的性质,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

直角坐标平面内,点O(0,0)、点A(3,3)、点B(3,-2),则△ABC的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c与y轴交于A(0,4),且抛物线经过点C(-3,-2),对称轴x=-
5
2

(1)求出抛物线的解析式;
(2)过点C作x轴的平行线交抛物线于B点,连接AC,AB,若在抛物线上有一点D,使得
3
2
△ABC=S△BCD,求D点的坐标;
(3)记抛物线与x轴左交点为E,在A、E两点之间的抛物线上有一点F,连接AE、FE、FA,试求出使得S△AEF面积最大时,F点的坐标以及此时的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

近似数0.0450有
 
个有效数字.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列运算正确的是(  )
A、a2•a3=a6
B、
a2
=|a|
C、3a+2a=a5
D、(a+b)2=a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

计算a6÷(-a)2的结果是(  )
A、a3
B、a4
C、-a3
D、-a4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A是抛物线y=-
5
8
x2+5x
与x轴正半轴的交点,点B在这条抛物线上,且点B的横坐标为2.连接AB并延长交y轴于点C,抛物线的对称轴交AC于点D,交x轴于点E.点P在线段CA上,过点P作x轴的垂线,垂足为点M,交抛物线于点Q.设点P的横坐标为m.
(1)求直线AB对应的函数解析式.
(2)当四边形DEMQ为矩形时,求点Q的坐标.
(3)设线段PQ的长为d(d>0),求d关于m的函数解析式.
(4)在(3)的情况下,请直接写出当d随着m的增大而减小时,m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).
(1)在如图(2)建立的坐标系下,求网球飞行路线的抛物线解析式;
(2)若竖直摆放5个圆柱形桶时,则网球能落入桶内吗?说明理由;
(3)若要使网球能落入桶内,求竖直摆放的圆柱形桶的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:|-1|-(
2
-2013)0-
9
+(-
1
2
)-1+3tan30°

查看答案和解析>>

同步练习册答案