精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.

(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.

【答案】
(1)解:如图1的正方形的边长是 ,面积是10


(2)解:如图2的三角形的边长分别为2,
(3)解:如图3,连接AC,CD,

则AD=BD=CD= =

∴∠ACB=90°,

由勾股定理得:AC=BC= =

∴∠ABC=∠BAC=45°


【解析】(1)根据勾股定理画出边长为 的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以它的对角线OB1为一边作正方形OB1B2C1 , 以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2 , 再以正方形OB2B3C2的对角线OB3为一边作正方形OB3B4C3 , …,依次进行下去,则点B6的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点CAD在同一条直线上,∠ABC=∠ADE=α,线段 BDCE交于点M

(1)如图1,若AB=ACAD=AE

①问线段BDCE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示);

(2)如图2,若AB= BC=kACAD =ED=kAE 则线段BDCE的数量关系为 ,∠BMC= (用α表示);

(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知正方形ABCD定点A13),B11),C31),规定“把正方形ABCD先沿x轴翻折再向左平移1个单位长度为一次变换如此这样连续经过2 017次变换后正方形ABCD的对角线交点M的坐标变为(  )

A. (-20152 B. (-2015,-2 C. (-2016,-2 D. (-20162

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图两直线ABCD相交于点OOE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度数

(2)OFOECOF的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图EAC90°1290°1324.

(1)如图①求证:DEBC

(2)若将图①改变为图②其他条件不变(1)中的结论是否仍成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个三角形的两边分别为24,则第三边长可能是(  )

A. 8B. 6C. 4D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。

(1)当点C在第一象限时,求证:△OPM≌△PCN;

(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;

(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刚家装修,准备安装照明灯.他和爸爸到市场进行调查,了解到某种优质品牌的一盏40瓦白炽灯的售价为1.5元,一盏8瓦节能灯的售价为22.38元,这两种功率的灯发光效果相当.假定电价为0.45元/度,设照明时间为x(小时),使用一盏白炽灯和一盏节能灯的费用分别为y1(元)和y2(元)[耗电量(度)=功率(千瓦)×用电时间(小时),费用=电费+灯的售价].
(1)分别求出y1、y2与照明时间x之间的函数表达式;
(2)你认为选择哪种照明灯合算?
(3)若一盏白炽灯的使用寿命为2000小时,一盏节能灯的使用寿命为6000小时,如果不考虑其他因素,以6000小时计算,使用哪种照明灯省钱?省多少钱?

查看答案和解析>>

同步练习册答案