精英家教网 > 初中数学 > 题目详情

【题目】如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.

(1)用含a的式子表示花圃的面积.
(2)如果通道所占面积是整个长方形空地面积的 , 求出此时通道的宽.
(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?

【答案】
(1)

【解答】解:由图可知,花圃的面积为(40﹣2a)(60﹣2a);


(2)

由已知可列式:60×40﹣(40﹣2a)(60﹣2a)=×60×40,

解以上式子可得:a1=5,a2=45(舍去),

答:所以通道的宽为5米;


(3)

设修建的道路和花圃的总造价为y,通道宽为a;

x花圃=(40﹣2a)(60﹣2a)=4a2﹣200a+2400;

x通道=60×40﹣(40﹣2a)(60﹣2a)=﹣4a2+200a,

由已知得y1=40(﹣4a2+200a),(2≤a≤10)

y2=

则y=y1+y2=

当a=2时,y有最小值,最小值为105920;

所以当通道宽为2米时,修建的通道和花圃的总造价最低为105920元.


【解析】(1)用含a的式子先表示出花圃的长和宽后利用其矩形面积公式列出式子即可;
(2)根据通道所占面积是整个长方形空地面积的 , 列出方程进行计算即可;
(3)根据图象,设出通道和花圃的解析式,用待定系数法求解,再根据实际问题写出自变量的取值范围即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD与EFGH均为正方形,点B、F在函数y= (x>0)的图象上,点G、C在函数y=﹣ (x<0)的图象上,点A、D在x轴上,点H、E在线段BC上,则点G的纵坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4 ,则△CEF的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O的直径,C、D是半圆的三等分点,延长AC,BD交于点E.
(1)求∠E的度数;
(2)点M为BE上一点,且满足EMEB=CE2 , 连接CM,求证:CM为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.

(1)求DB的长;
(2)在△ABC中,求BC边上高的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:﹣(﹣2)+(1+π)0﹣||+
(2)先化简,再求值:(x+2)(x﹣2)﹣x(x+3),其中x=﹣3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣2|++2﹣1﹣cos60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣3|+2cos30°+(0﹣(﹣1

查看答案和解析>>

同步练习册答案