【题目】某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:
最喜爱的节目 | 人数 |
歌曲 | 15 |
舞蹈 | a |
小品 | 12 |
相声 | 10 |
其它 | b |
(1)在此次调查中,该校一共调查了 名学生;
(2)a= ;b= ;
(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;
(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.
【答案】(1)50;(2)8,5;(3)108°;(4)240人.
【解析】
(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,
(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,
(3)先计算“歌曲”所占的百分比,用360°去乘即可,
(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.
(1)12÷24%=50人
故答案为50.
(2)a=50×16%=8人,
b=50﹣15﹣8﹣12﹣10=5人,
故答案为:8,5.
(3)360°×=108°
答:“歌曲”所在扇形的圆心角的度数为108°;
(4)1200×=240人
答:该校1200名学生中最喜爱“相声”的学生大约有240人.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).
(1)求m、k的值;
(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;
(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A型“共享单车”,因为单车需求量增加,计划继续投放B型单车,B型单车的投放数量与A型单车的投放数量相同,投资总费用减少20%,购买B型单车的单价比购买A型单车的单价少50元,则A型单车每辆车的价格是多少元?设A型单车每辆车的价格为x元,根据题意,列方程正确的是( )
A.=
B.=
C.=
D.=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.
(1)求抛物线的函数表达式;
(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;
(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足+|2b+12|+(c﹣4)2=0.
(1)求B、C两点的坐标;
(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;
(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的?直接写出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:
(1)本次被调查的学生有多少人.
(2)将两幅统计图补充完整.
(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.
(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com