精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,DE是斜边AB的垂直平分线,且DE=1cm,则AC长为


  1. A.
    2.5cm
  2. B.
    3cm
  3. C.
    3.5cm
  4. D.
    4cm
B
分析:由BE为角平分线,且ED垂直于AB,EC垂直于BC,利用角平分线性质得到ED=EC,再由BE为公共边,利用HL得出直角三角形BDE与直角三角形BCE全等,由全等三角形的对应边相等得到BD=BC,又DE垂直平分AB,得到AD=BD,且AE=BE,设AE=BE=xcm,则由AE+EC表示出AC,在直角三角形ADE中,利用勾股定理表示出AD,即为BC,由AB=2AD表示出AB,在直角三角形ABC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可求出AC的长.
解答:∵BE平分∠ABC,ED⊥BA,EC⊥BC,
∴ED=EC=1cm,又BE=BE,
∴Rt△BDE≌Rt△BCE(HL),
∴BD=BC,
又∵DE垂直平分AB,
∴AE=BE,AD=BD,
设AE=BE=xcm,则有AC=(x+1)cm,
在Rt△ADE中,根据勾股定理得:AD2+DE2=AE2
∴AD=BC=cm,AB=2AD=2cm,
在Rt△ABC中,根据勾股定理得:AB2=AC2+BC2
即4(x2-1)=(x+1)2+x2-1,
整理得:(x-2)(x+1)=0,
解得:x=2或x=-1(舍去),
故AC=2+1=3cm.
故选B.
点评:此题考查了角平分线定理,线段垂直平分线定理,以及勾股定理,利用了转化的思想,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案