精英家教网 > 初中数学 > 题目详情
如图,以正方形ABCD的对角线AC为一边,延长AB到E,使AE=AC,以AE为一边作菱形AEFC,若菱形的面积为9
2
,求正方形边长.精英家教网
分析:根据题意可知AC=AE,且CB⊥AE,故菱形面积S=AE•BC,且AC=
2
BC,根据S可求得BC的值,且BC为正方形的边长,即可解题.
解答:解:正方形边长为BC,
则对角线AC=
2
BC,
且AE=AC,
∴AE=
2
BC,
∵菱形面积S=AE•BC
2
BC•BC=9
2

∴BC=3.
故正方形的边长为 3.
点评:本题考查了正方形各边长相等、各内角为直角的性质,菱形面积的计算,菱形各边长相等的性质,本题中求证AE=
2
BC是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=
12

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连接AO,如果AB=3,AO=2
2
,那么AC的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边和一直角边为边长向外作正方形,面积分别为169和25,则另一直角边的长度BC为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC各边为边长的正方形面积分别为S1、S2、S3,且S1+S2+S3=50,则AB=(  )

查看答案和解析>>

同步练习册答案