ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðÏàÓ¦µÄÎÊÌ⣮

¾ÅÄêÒåÎñ½ÌÓýÈýÄêÖƳõ¼¶ÖÐѧ½Ì¿ÆÊ顶´úÊý¡·µÚÈý²áÖУ¬ÓÐÒÔϼ¸¶ÎÎÄ×Ö£º¡°ÔÚÒ»´Î¿¼ÊÔÖУ¬¿¼ÉúÓÐ2Íò¶àÈË£¬Èç¹ûΪÁ˵õ½ÕâЩ¿¼ÉúµÄÊýѧƽ¾ù³É¼¨£¬¶ø½«ËûÃǵijɼ¨È«²¿Ïà¼ÓÔÙ³ýÒÔ¿¼Éú×ÜÊý£¬Äǽ«ÊÇÊ®·ÖÂé·³µÄ£®ÄÇôÔõÑù²ÅÄÜÁ˽âÕâЩ¿¼ÉúµÄÊýѧƽ¾ù³É¼¨ÄØ?¡±

¡°Í¨³££¬ÔÚ¿¼ÉúºÜ¶àµÄÇé¿öÏ£¬ÎÒÃÇÊÇ´ÓÖгéÈ¡²¿·Ö¿¼Éú(±ÈÈç˵£¬500Ãû)µÄ³É¼¨£¬ÓÃËûÃǵÄƽ¾ù³É¼¨È¥¹À¼ÆËùÓÐѧÉúµÄƽ¾ù³É¼¨£®¡±

(1)ÉÏÊöÎÄ×Ö±íÊöÁËͳ¼ÆÖеÄʲô˼Ïë?

(2)ÉÏÊöÎÄ×ÖËù±íÊöµÄÎÊÌâÖУ¬×ÜÌåÖ¸µÄÊÇʲô?¸öÌåÖ¸µÄÊÇʲô?

(3)¾ÙÒ»¸öÔÚʵ¼ÊÉú»îÖУ¬ÔËÓÃͬÑù˼Ïë½â¾öÎÊÌâµÄÀý×Ó£®

 

´ð°¸£º
½âÎö£º

(1)ÓÃÑù±¾Æ½¾ùÊý¹À¼Æ×ÜÌåƽ¾ùÊýµÄͳ¼Æ˼Ï룮

(2)×ÜÌ壺ËùÓп¼Éú³É¼¨µÄÈ«Ì壻¸öÌ壺ÿÃû¿¼ÉúµÄ³É¼¨£®

(3)ÂÔ£®

 


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðºóÃæµÄÎÊÌ⣺
¡ß
1
1¡Á3
=
1
2
£¨1-
1
3
£©£¬
1
3¡Á5
=
1
2
£¨
1
3
-
1
5
£©£¬¡­£¬
1
17¡Á19
=£¨-
1
19
£©
¡à
1
1¡Á3
+
1
3¡Á5
+
¡­+
1
17¡Á19

=
1
2
£¨1-
1
3
£©+
1
2
(
1
3
-
1
5
£©+¡­+
1
2
(
1
17
-
1
19
£©
=
1
2
(1-
1
3
+
1
3
-
1
5
+¡­+
1
17
-
1
19
)

=
1
2
(1-
1
19
)
=
9
19
£®
£¨1£©ÔÚʽ×Ó
1
1¡Á3
+
1
3¡Á5
+¡­
ÖУ¬µÚÎåÏîΪ
 
£¬µÚnÏîΪ
 
£®
£¨2£©¼ÆË㣺
1
x(x+1)
+
1
(x+1)(x+2)
+¡­+
1
(x+99)(x+100)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

20¡¢ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðÏàÓ¦ÎÊÌ⣺
¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax+a2ÕâÑùµÄÍêȫƽ·½Ê½£¬¿ÉÒÔÓù«Ê½·¨½«Ëü·Ö½â³É£¨x+a£©2µÄÐÎʽ£¬µ«ÊǶÔÓÚ¶þ´ÎÈýÏîʽx2+2ax-3a2£¬¾Í²»ÄÜÖ±½ÓÓ¦ÓÃÍêȫƽ·½¹«Ê½ÁË£¬ÎÒÃÇ¿ÉÒÔÔÚ¶þ´ÎÈýÏîʽx2+2ax-3a2ÖÐÏȼÓÉÏÒ»Ïîa2£¬Ê¹Æä³ÉΪÍêȫƽ·½Ê½£¬ÔÙ¼õÈ¥aÕâÏʹÕû¸öʽ×ÓµÄÖµ²»±ä£¬ÓÚÊÇÓУº
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=£¨x+a£©2-£¨2a£©2
=£¨x+2a+a£©£¨x+a-2a£©
=£¨x+3a£©£¨x-a£©£®
£¨1£©ÏñÉÏÃæÕâÑù°Ñ¶þ´ÎÈýÏîʽ·Ö½âÒòʽµÄÊýѧ·½·¨ÊÇ£®
Åä·½·¨

£¨2£©ÕâÖÖ·½·¨µÄ¹Ø¼üÊÇ£®
Åä³ÉÍêȫƽ·½Ê½

£¨3£©ÓÃÉÏÊö·½·¨°Ñm2-6m+8·Ö½âÒòʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðÎÊÌ⣺
º¯Êýy=ax2+bx+c£¨a¡Ù0£©½Ð×ö¶þ´Îº¯Êý£¬ËüµÄͼÏóÊÇÅ×ÎïÏߣ¬¶þ´Îº¯Êý¿ÉÒÔ»¯³Éy=a£¨x-h£©2+kµÄÐÎʽ£¬Ôòµã£¨h£¬k£©ÎªÅ×ÎïÏߵĶ¥µã×ø±ê£®
Àý£ºy=2x2+4x-1=2£¨x+1£©2-3£¬Ôò¶¥µã×ø±êΪ£¨-1£¬-3£©£®
ÔËÓÃÉÏÊö·½·¨£¬ÇóÅ×ÎïÏßy=-2x2-3x+4µÄ¶¥µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðÎÊÌ⣺
ÔÚÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©ÖУ¬Èç¹ûb2-4ac¡Ý0ʱ£¬ÄÇ
ôËüµÄÁ½¸ö¸ùÊÇx1=
-b+
b2-4ac
2a
£¬x2=
-b-
b2-4ac
2a
ËùÒÔx1+x2=
(-b+
b2-4ac
)+(-b-
b2-4ac
)
2a
=
-2b
2a
=-
b
a
x1x2=
(-b+
b2-4ac
)•(-b-
b2-4ac
)
2a•2a
=
b2-(b2-4ac)
4a2
=
c
a
£®
Óɴ˿ɼû£¬Ò»Ôª¶þ´Î·½³ÌµÄÁ½¸ùµÄºÍ¡¢Á½¸ùµÄ»ýÊÇÓÉÒ»Ôª¶þ´Î·½³ÌµÄϵÊýa¡¢b¡¢cÈ·¶¨µÄ£®ÔËÓÃÉÏÊö¹Øϵ½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÒÑÖªÒ»Ôª¶þ´Î·½³Ì2x2-6x-1=0µÄÁ½¸ö¸ù·Ö±ðΪx1¡¢x2£¬Ôòx1+x2=
3
3
£¬x1x2=
-
1
2
-
1
2
£¬
1
x1
+
1
x2
=
-6
-6
£®
£¨2£©ÒÑÖªx1¡¢x2ÊǹØÓÚxµÄ·½³Ìx2-x+a=0µÄÁ½¸öʵÊý¸ù£¬ÇÒ
x
2
1
+
x
2
2
=7
£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011-2012ѧÄê½­ËÕÊ¡ÎÞÎýÊÐó»Ô°ÖÐѧ¾ÅÄ꼶£¨ÉÏ£©ÆÚÖи´Ï°ÊýѧÊÔ¾í£¨ËÄ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðÎÊÌ⣺
º¯Êýy=ax2+bx+c£¨a¡Ù0£©½Ð×ö¶þ´Îº¯Êý£¬ËüµÄͼÏóÊÇÅ×ÎïÏߣ¬¶þ´Îº¯Êý¿ÉÒÔ»¯³Éy=a£¨x-h£©2+kµÄÐÎʽ£¬Ôòµã£¨h£¬k£©ÎªÅ×ÎïÏߵĶ¥µã×ø±ê£®
Àý£ºy=2x2+4x-1=2£¨x+1£©2-3£¬Ôò¶¥µã×ø±êΪ£¨-1£¬-3£©£®
ÔËÓÃÉÏÊö·½·¨£¬ÇóÅ×ÎïÏßy=-2x2-3x+4µÄ¶¥µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸