精英家教网 > 初中数学 > 题目详情

如图,已知线段AB,
(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);
(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)
(2)若AB=2,求出你所作的黄金三角形的周长.

解:(1)可分为两种情况:底与腰之比均为黄金比的等腰三角形如图1,腰与底之比为黄金比为黄金比如图2,

(2)∵如图1,AB=2,当底与腰之比为黄金比时:
=
∴AD=-1,
∴AB+AD+BD=
如图2,当腰与底之比为黄金比时,
=
∴AC=+1,
∴△ABC周长为
分析:(1)根据底与腰之比均为黄金比的等腰三角形以及腰与底之比为黄金比为黄金比分别求出即可;
(2)利用黄金比为,求出三角形底边长即可得出答案.
点评:此题主要考查了黄金三角形的作法以及黄金三角形的性质,根据已知得出底边作法是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图:已知线段AB,点C在AB的延长线上,AC=
5
3
BC,D在AB的反向延长线上,BD=
3
5
DC.精英家教网
(1)在图上画出点C和点D的位置;
(2)设线段AB长为x,则BC=
 
;AD=
 
;(用含x的代数式表示)
(3)若AB=12cm,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为(  )
精英家教网
A、6cmB、5cmC、4cmD、3cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB,按下列要求作图:分别以A、B为圆心,大于
12
AB
的相同长度为半径画弧,设两段弧在AB上方的交点为M,连接AM,延长AM到C,使得AM=MC,连接BC(只要保留作图痕迹).根据所作图形,求证:∠ABC=90°.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB和CD相交于点O,线段OA=OD,OC=OB,求证:△OAC≌△ODB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知线段AB,延长AB至C,使得BC=
1
2
AB,若D是BC的中点,CD=2cm,则AC的长等于(  )
A、4cmB、8cm
C、10cmD、12cm

查看答案和解析>>

同步练习册答案