精英家教网 > 初中数学 > 题目详情
如图,直线y=
3
5
x-4分别交x、y轴于A、B两点,O为坐标原点.
(1)求B点的坐标;
(2)若D是OA中点,过A的直线l(3)把△AOB分成面积相等的两部分,并交y轴于点C.
①求过A、C、D三点的抛物线的函数解析式;
②把①中的抛物线向上平移,设平移后的抛物线与x轴的两个交点分别为M、N,试问过M、N、B三点的圆的面积是否存在最小值?若存在,求出圆的面积;若不存在,请说明理由.
(1)∵当x=0时,y=-4,
∴B点的坐标为(0,-4);

(2)①∵过A的直线l(3)把△AOB分成面积相等的两部分,
∴C(0,-2),
又∵A(
20
3
,0),D是OA中点,
∴D(
10
3
,0),
设过A、C、D三点的抛物线的函数解析式为:y=ax2+bx+c,
400
9
a+
20
3
b+c=0
100
9
a+
10
3
b+c=0
c=-2

解得:
a=-
9
100
b=
9
10
c=-2

∴过A、C、D三点的抛物线的函数解析式为y=-
9
100
x2+
9
10
x-2;
②存在.
理由如下:抛物线的解析式可化为y=-
9
100
(x-5)2+
1
4
,其对称轴是x=5.
由于过M、N的圆的圆心必在对称轴上,要使圆的面积最小,则圆的半径要最小,
即点B到圆心的距离要最短,过B作BE垂直抛物线的对称轴,垂足为E,
则符合条件的圆是以E为圆心,EB长为半径的圆,
其面积为25π.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

将一个等腰直角三角板放在坐标系中,如图所示,三个顶点坐标分别是A(0,2),B(2,1),C(1,-1),将三角板绕A点顺时针转α°后,使B点与x轴上的点D(-1,0)重合.
(1)写出点E的坐标和α的值(直接写出结果);
(2)求出过B,C,E三点的抛物线的解析式;
(3)在抛物线的对称轴上是否存在一点P,使△PAD是以AD为腰的等腰三角形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,Rt△OAB的OA边在x轴上,OB边在y轴上,且OA=2,AB=
5
,将△OAB绕点O逆时针方向旋转90°后得△OCD,已知点E的坐标是(2、2)
(1)求经过D、C、E点的抛物线的解析式;
(2)点M(x、y)是抛物线上任意点,当0<x<2时,过M作x轴的垂线交直线AC于N,试探究线段MN是否存在最大值,若存在,求出最大值是多少?并求出此时M点的坐标;
(3)P为直线AC上一动点,连接OP,作PF⊥OP交直线AE于F点,是否存在点P,使△PAF是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(如005•宁波)已知抛物线y=-x-如kx+rk(k>0)交x轴于A、B两点,交y轴于点C,以AB为直径的⊙E交y轴于点y、着(如图),且y着=0,G是劣弧Ay上的动点(不与点A、y重合),直线CG交x轴于点P.
(1)求抛物线的解析式;
(如)当直线CG是⊙E的切线时,求ca左∠PC右的值;
(r)当直线CG是⊙E的割线时,作GM⊥AB,垂足为y,交P着于点M,交⊙E于另一点左,设M左=c,GM=u,求u关于c的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c的顶点为P(1,-2),且经过点A(-3,6),并与x轴交于点B和C.

(1)求这个二次函数的解析式,并求出点C坐标及∠ACB的大小;
(2)设D为线段OC上一点,满足∠DPC=∠BAC,求D的坐标;
(3)在x轴上,是否存在点M,使得以M为圆心的圆能与直线AC、直线PC及y轴都相切?如果存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A?B?C?D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式;
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将现有一根长为1的铁丝.
(1)若把它截成四段然后围成图1所示的“口”形的矩形框,当矩形框的长a与矩形框的宽b满足a=______b时所围成的矩形框面积最大.
(2)若把它截成六段,①可以围成图2所示的“目”形的矩形框,当矩形框的长a与矩形框的宽b满足a=______b时所围成的矩形框面积最大;②可以围成图3所示的“田”形矩形框,当矩形框的长a与矩形框的宽b满足a=______b时所围成的矩形框面积最大.

查看答案和解析>>

同步练习册答案