精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x22k+1x+4k﹣3=0

1)求证无论k取什么实数值该方程总有两个不相等的实数根

2)当RtABC的斜边长a且两条直角边的长bc恰好是这个方程的两个根时ABC的周长

【答案】(1)答案见解析;(2)

【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=2k-32+40,由此可证出:无论k取什么实数值,该方程总有两个不相等的实数根;

2)根据根与系数的关系结合勾股定理,即可得出关于k的一元二次方程,解之即可得出k值,进而可得出原方程,再根据根与系数的关系,即可求出△ABC的周长.

试题解析:解:1△=[﹣2k+1]2﹣44k﹣3=4k2﹣12k+13=2k﹣32+4

2k﹣32≥02k﹣32+40,即0无论k取什么实数值,该方程总有两个不相等的实数根;

2bc是方程x22k+1x+4k﹣3=0的两个根,b+c=2k+1bc=4k﹣3

a2=b2+c2a=k2k6=0k1=3k2=2

bc均为正数,4k30k=3,此时原方程为x27x+9=0b+c=7∴△ABC的周长为7+

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用表示直角三角形的两直角边(),下列四个说法:

.

其中说法正确的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CEDB,BEDC.

(1)求证:四边形DBEC是菱形;

(2)若AD=3,DF=1,求四边形DBEC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).

1)当每吨售价是240元时,计算此时的月销售量;

2)求出yx的函数关系式(不要求写出x的取值范围);

3)该经销店要获得最大月利润,售价应定为每吨多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.

(1)每个文具盒、每支钢笔各多少元?

(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCD的边AD上一个动点,矩形的两条边ABBC的长分别为68,那么点P到矩形的两条对角线ACBD的距离之和是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把菱形沿折叠,落在边上的处,若,则的大小为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,∠BAC=90°AB=AC,点D为直线BC上一动点(点D不与BC重合).以AD为边作正方形ADEF,连接CF

1)如图1,当点D在线段BC上时,求证:①BD⊥CF②CF=BC﹣CD

2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CFBCCD三条线段之间的关系;

3)如图3,当点D在线段BC的反向延长线上时,且点AF分别在直线BC的两侧,其它条件不变:请直接写出CFBCCD三条线段之间的关系.若连接正方形对角线AEDF,交点为O,连接OC,探究△AOC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案