精英家教网 > 初中数学 > 题目详情
已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论.
考点:切线的判定
专题:证明题
分析:(1)连结CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;
(2)连结OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.
解答:(1)证明:连结CD,如图,
∵BC为直径,
∴∠BDC=90°,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
即点D是AB的中点;
(2)解:DE与⊙O相切.理由如下:
连结OD,
∵AD=BD,OC=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
而DE⊥AC,
∴DE⊥OD,
∴DE为⊙O的切线.
点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在元旦联欢会上,有一个开盒有奖的游戏,两只外观一样的盒子,一只装有奖品,一只是空的,游戏规定:每人每次游戏时主持人先混合盒子再拿出来,参加游戏的同学随机打开其中一只,若有奖品,就获得该奖品,若是空盒子,就表演一个节目.
(1)两个人参加游戏,都获奖的概率为
 

(2)n个人参加游戏,全部获奖的概率为
 

(3)现取三只外观一样的盒子,一只内有奖品,另两只空盒子,游戏规则不变.两个人参加游戏,用画树形图法求至少有一个人表演节目的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知两个同心圆中,大圆的弦AB、AC切小圆于D、E,△ABC的周长为16cm,求△ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

将一刻度尺放在数轴上(数轴的单位长度是1cm),使刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x,那么x对应的值可能为(  )
A、5B、8
C、-11D、5或-11

查看答案和解析>>

科目:初中数学 来源: 题型:

下列运算中正确的是(  )
A、2a+3b=5ab
B、3a-2=
1
3a2
C、(-sin30°)0=-
1
2
D、(-x5)(-x)3=x8

查看答案和解析>>

科目:初中数学 来源: 题型:

8点18分时,时针与分针的夹角的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在数学课外实践活动中,小于在一条河西岸一段上的A,B两点处利用测角仪分别对东岸的C点进行测量,测得BC与河西岸夹角60°,AC与河西岸夹角75°,且AB=100米,求点C到河西岸的距离.(精确到1米,tan60°≈1.73,tan75°≈3.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

在物理试验中,当电流在一定时间段内正常通过电子元件时,每个电子元件的状态有两种可能:通电或断开,并且这两种状态的可能性相等.当有两个电子元件a、b并联时,P、Q之间电流通过的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列实数中最大的是(  )
A、-2013
B、2013
C、
1
2013
D、-
1
2013

查看答案和解析>>

同步练习册答案