精英家教网 > 初中数学 > 题目详情
16.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?

分析 (1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;
(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.

解答 解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有
$\left\{\begin{array}{l}{x+3y=1240}\\{3x+2y=1760}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=400}\\{y=280}\end{array}\right.$.
故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;
(2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,
400×6+280×2
=2400+560
=2960(元).
方法2:设租用甲种客车x辆,依题意有
45x+30(8-x)≥330,
解得x≥6,
租用甲种客车6辆,租用乙客车2辆的租车费用为:
400×6+280×2
=2400+560
=2960(元);
租用甲种客车7辆,租用乙客车1辆的租车费用为:
400×7+280
=2800+280
=3080(元);
2960≤3080,
故最节省的租车费用是2960元.

点评 本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.某校九年级进行集体跳绳比赛.如图所示,跳绳时,绳甩到最高处时的形状可看作是某抛物线的一部分,记作G,绳子两端的距离AB约为8米,两名甩绳同学拿绳的手到地面的距离AC和BD基本保持1米,当绳甩过最低点时刚好擦过地面,且与抛物线G关于直线AB对称.
(1)求抛物线G的表达式并写出自变量的取值范围;
(2)如果身高为1.5米的小华站在CD之间,且距点C的水平距离为m米,绳子甩过最高处时超过她的头顶,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.一次函数y=kx+b的图象与两坐标轴分别交于A(2,0),B(0,-1)两点.
(1)求k、b;
(2)P为该一次函数图象上一点,过P作PQ⊥x轴,垂足为Q.若S△PAQ=4,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,求小刚每消耗1千卡能量需要行走30步.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图1,Rt△ABC的两条直角边长分别为6cm和8cm,作Rt△ABC的内切圆,则内切圆的半径为2cm;作Rt△ABC斜边上的高,则Rt△ABC被分成两个小直角三角形,分别作其内切圆,得到图2,这两个内切圆的半径的和为$\frac{14}{5}$cm;在图2中继续作小直角三角形斜边上的高,再分别作被分成的小直角三角形的内切圆,得到图3,…,依此类推,若在Rt△ABC中作出了16个这样的小直角三角形,它们的内切圆面积分别记为S1、S2,…,S16,则S1+S2+…+S16=4πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,垂足分别为F、E,连接AD、BC,AD=CB,DE=BF,求证:AF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下结论:
①EF=AP;
②△APF和△CPF可以分别看作由△BPE和△APE绕点P顺时针方向旋转90°得到的;
③△EPF是等腰直角三角形;
④S△ABC=2S四边形AEPF
其中始终成立的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.化简求值:($\frac{x-1}{x}$-$\frac{x-2}{x+1}$)÷$\frac{2x-1}{{x}^{2}+3x+2}$,其中x=$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2$\sqrt{3}$,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为(2$\sqrt{3}$,2);
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:$\frac{DE}{DB}$=$\frac{\sqrt{3}}{3}$;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

同步练习册答案