精英家教网 > 初中数学 > 题目详情

如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数是________.

90°
分析:首先根据折叠方法可得∠1=∠3=∠CFE,再根据角平分线性质可知:∠2=∠4,由图形可知∠1+∠2+∠3+∠4=180°,故∠1+∠2=90°,进而得到∠GFH的度数.
解答:解:∵△GFE是由△GFC沿GF折叠,
∴∠1=∠3=∠CFE,
∵FH平分∠BFE,
∴∠2=∠4=∠EFB,
∵∠1+∠2+∠3+∠4=180°,
∴∠1+∠2=90°,
即:∠GFH=90°.
故答案为:90°.
点评:此题主要考查了翻折变换以及角平分线的性质,解决问题的关键是根据翻折的方法得到∠1和∠3的关系,根据角平分线的性质得到∠2和∠4的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,将长方形纸片的一角折叠,使顶点A落在A′处,EF为折痕,再将另一角折叠,使顶点B落在EA′上的B′点处,折痕为EG,则∠FEG等于
90°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将长方形纸片的一角折叠,使顶点A落在点A′处,BC为折痕,若BE是∠A′BD的角平分线,求∠CBE的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将长方形纸片的一角斜折,使顶点A落在A′处,EF为折痕;再将另一角斜折,使顶点B落在EA′上B′点处,折痕为EG;观察并估计∠FEG=
90°
90°
.再测量进行验证.你能说出理由吗?若被折角∠AEF=30°,求∠A′EB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将长方形纸片ABCD沿对角线AC折叠,使点B落在点B′处,CB′交AD于点M.试说明△AMC的形状,并说明理由.

查看答案和解析>>

同步练习册答案