精英家教网 > 初中数学 > 题目详情
如图:在△ABC中,∠ABC=30°,BC=4
3
,AB=4,以AB长为直径作⊙O交BC于点D.
(1)试判断△ABC的形状,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
分析:(1)△ABC是等腰三角形.如图,连接AD.欲证明△ABC是等腰三角形,只需证得AD是边BC的中垂线即可;
(2)如图,连接OD,只需证得半径OD⊥ED即可推知直线DE是⊙O的切线.
解答:(1)解:△ABC是等腰三角形.理由如下:
如图,连接AD.
∵AB是⊙O的直径,
∴∠ADB=90°.
又∵∠ABC=30°,AB=4,
∴AD=
1
2
AB=2,
∴BD=
AB2-AD2
=
42-22
=2
3

∵BC=4
3

∴BD=
1
2
BC,即AD是BC的中垂线,
∴△ABC的等腰三角形;

(2)证明:如图,D作DE⊥AC,垂足为点E,连接OD.
∵AO=BO,CD=BD,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD.
∵OD是半径,
∴直线DE是⊙O的切线.
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案