精英家教网 > 初中数学 > 题目详情
(2012•宿迁)如图,SO,SA分别是圆锥的高和母线,若SA=12cm,∠ASO=30°,则这个圆锥的侧面积是
72π
72π
cm2
分析:首先根据SA=12cm,∠ASO=30°求得圆锥的底面半径OA,然后利用圆锥的侧面积的计算公式进行计算即可.
解答:解:∵SA=12cm,∠ASO=30°,
∴AO=
1
2
SA=6cm
∴圆锥的底面周长=2πr=2×6π=12π,
∴侧面面积=
1
2
×12π×12=72πcm2
故答案为72π.
点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•宿迁)如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G,若∠CEF=70°,则∠GFD′=
40
40
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图是使用测角仪测量一幅壁画高度的示意图,已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画底端的俯角∠BDF=30°,且点D距离地面的高度DE=2m,求壁画AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图,在四边形ABCD中,∠DAB=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G,设AD=a,BC=b.
(1)求CD的长度(用a,b表示);
(2)求EG的长度(用a,b表示);
(3)试判断EG与FG是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图,在平面直角坐标系xOy中,已知直线l1:y=
12
x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.
(1)求M,N的坐标.
(2)矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动,设矩形ABCD与△OMN的重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时开始结束).直接写出S与自变量t之间的函数关系式(不需要给出解答过程).
(3)在(2)的条件下,当t为何值时,S的值最大?并求出最大值.

查看答案和解析>>

同步练习册答案