½â´ð£º½â£º£¨1£©½â·½³Ì×é
£¬
½âµÃ£º
£¬
ÔòMµÄ×ø±êÊÇ£º£¨4£¬2£©£®
ÔÚ½âÎöʽy=-x+6ÖУ¬Áîy=0£¬½âµÃ£ºx=6£¬ÔòNµÄ×ø±êÊÇ£º£¨6£¬0£©£®
£¨2£©µ±0¡Üt¡Ü1ʱ£¬Öغϲ¿·ÖÊÇÒ»¸öÈý½ÇÐΣ¬OB=t£¬Ôò¸ßÊÇ
t£¬ÔòÃæ»ýÊÇ
¡Át•
t=
t
2£»
µ±1£¼t¡Ü4ʱ£¬Öغϲ¿·ÖÊÇÖ±½ÇÌÝÐΣ¬ÌÝÐεĸßÊÇ1£¬Ïµ×ÊÇ£º
t£¬Éϵ×ÊÇ£º
£¨t-1£©£¬¸ù¾ÝÌÝÐεÄÃæ»ý¹«Ê½¿ÉÒԵõ½£ºS=
[
t+
£¨t-1£©]=
£¨t-
£©£»
µ±4£¼t¡Ü5ʱ£¬¹ýM×÷xÖáµÄ´¹Ïߣ¬ÔòÖغϲ¿·Ö±»´¹Ïß·Ö³ÉÁ½¸öÖ±½ÇÌÝÐΣ¬Á½¸öÌÝÐεÄϵ׶¼ÊÇ2£¬Éϵ׷ֱðÊÇ£º-t+6ºÍ
£¨t-1£©£¬¸ù¾ÝÌÝÐεÄÃæ»ý¹«Ê½¼´¿ÉÇóµÃ
S=-
t
2+
t-
£»
µ±5£¼t¡Ü6ʱ£¬Öغϲ¿·ÖÊÇÖ±½ÇÌÝÐΣ¬Óëµ±1£¼t¡Ü4ʱ£¬Öغϲ¿·ÖÊÇÖ±½ÇÌÝÐεļÆËã·½·¨Ïàͬ£¬ÔòS=
£¨13-2t£©£»
µ±6£¼t¡Ü7ʱ£¬Öغϲ¿·ÖÊÇÖ±½ÇÈý½ÇÐΣ¬ÔòÓëµ±0¡Üt¡Ü1ʱ£¬½â·¨Ïàͬ£¬¿ÉÒÔÇóµÃS=
£¨7-t£©
2£®
Ôò£ºS=
| t2(0¡Üt¡Ü1) | (t-)(1£¼t¡Ü4) | -t2+t-(4£¼t¡Ü5) | (13-2t)(5£¼t¡Ü6) | (7-t)2(6£¼t¡Ü7) |
| |
£»
£¨3£©ÔÚ0¡Üt¡Ü1ʱ£¬º¯ÊýÖµyËætµÄÔö´ó¶øÔö´ó£¬Ôòµ±t=1ʱ£¬È¡µÃ×î´óÖµÊÇ£º
£»
µ±1£¼t¡Ü4£¬º¯ÊýÖµyËætµÄÔö´ó¶øÔö´ó£¬Ôòµ±t=4ʱ£¬È¡µÃ×î´óÖµÊÇ£º
£¨4-
£©=
£»
µ±4£¼t¡Ü5ʱ£¬ÊǶþ´Îº¯Êý£¬¶Ô³ÆÖát=
£¬Ôò×î´óÖµÊÇ£º-
¡Á£¨
£©
2+
¡Á
-
=
£»
µ±5£¼t¡Ü6ʱ£¬º¯ÊýÖµyËætµÄÔö´ó¶ø¼õС£¬ÎÞ×î´óÖµ£»
ͬÀí£¬µ±6£¼t¡Ü7ʱ£¬yËætµÄÔö´ó¶ø¼õС£¬ÎÞ×î´óÖµ£®
×ÜÖ®£¬º¯ÊýµÄ×î´óÖµÊÇ£º
£®