如图,在Rt△ABC中,∠ACB=900,AC=
,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T。
![]()
(1)求证:点E到AC的距离为一常数;
(2)若AD=
,当a=2时,求T的值;
(3)若点D运动到AC的中点处,请用含a的代数式表示T。
(1)由锐角三角函数和平行的性质可证得
。
(2)![]()
(3)![]()
【解析】
分析:(1)由锐角三角函数和平行的性质可证得
。
(2)应用锐角三角函数求得三边长即可。
(3)分点H在线段AC上和点H在线段AC的延长线上两种情况讨论即可。
解:(1)证明:如图,过点E作EH⊥AC于点H,则EH即为点E到AC的距离。
![]()
∵在Rt△ABC中,∠ACB=900,AC=
,BC=3,
∴
。∴∠A=600。
∵DE∥AB,∴∠EDH=∠A=600。
∵DE=a(a为小于3的常数),
∴
(常数)。
∴点E到AC的距离为一常数。
(2)当a=2时,
,
。
∵AD=
,∴AH=
。∴此时,点H在在线段AC上。
∴此时,△DEF与△ABC重叠部分就是△DEF。
∴
。
(3)当点D运动到AC的中点处时,
,
由
得,
,解得
。
∴分两种情况:
①当
时,点H在线段AC上,此时,△DEF与△ABC重叠部分就是△DEF。
∴
。
②当
时,点H在线段AC的延长线上,如图,此时,△DEF与△ABC重叠部分就是△DCG。
![]()
根据三角形中位线定理,点G是BC的中点,
∴CD=
,CG=
,DG=
。
∴
。
综上所述,
。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com