精英家教网 > 初中数学 > 题目详情

为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.

解析试题分析:(1)根据销售额=销售量×销售价单x,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
试题解析:(1)由题意得:
∴w与x的函数关系式为:.
(2)
∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.
考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):

销售单价(元)
50
53
56
59
62
65
月销售量(千克)
420
360
300
240
180
120
该商品以每千克50元为售价,在此基础上设每千克的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).

⑴△EFG的边长是___________ (用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.

(1)求C点的坐标及抛物线的解析式;(6分)
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(4分)
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由. (4分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量W(台),销售单价x(元)满足W=-2x+80,设销售这种台灯每天的利润为y(元).求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

将抛物线向左平移个单位长度,使之过点,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数的图像经过点(0,-4),且当x=2,有最大值—2。求该二次函数的关系式:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数的图象以为顶点,且过点
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案