证明:

(1)∵∠A=∠C=90゜,
∴在四边形ABCD中,∠ABC+∠ADC=360°-∠A-∠C=180゜;
(2)DE⊥BF.
延长DE交BF于G,
∵∠ABC+∠ADC=180°,∠AB+∠CBM=180°,
∴∠ADC=∠CBM,
∵DE平分∠ADC,BF平分∠ABC外角,
∴∠CDE=

∠ADC,∠EBF=

∠CBM,
∴∠CDE=∠EBF.
∵∠DEC=∠BEG,
∴∠EGB=∠C=90゜,
∴DE⊥BF.
(3)DE∥BF,
连接BD,
∵∠ABC+∠ADC=180°,
∴∠NDC+∠MBC=180゜,
∵BF、DE分别平分∠ABC、∠ADC的外角,
∴∠EDC+∠CBF=90゜,
∴∠EDC+∠CDB+∠CBD+∠FBC=180゜,
∴DE∥BF.
分析:(1)由在四边形ABCD中.∠A=∠C=90゜,根据四边形的内角和定理,即可证得:∠ABC+∠ADC=180゜;
(2)延长DE交BF于G.易证∠ADC=∠CBM.可得∠CDE=∠EBF.即可得∠EGB=∠C=90゜,则可证得DE⊥BF.
(3)连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF.
点评:此题考查了三角形内角和定理,平行线的性质以及三角形外角的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.