【题目】(12分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
【答案】
【解析】试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CDCE,
∴CD==,
∴OC==,
∴⊙O的半径=.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论:
⑴ac<0;
⑵当x>1时,y的值随x值的增大而减小.
⑶3是方程ax2+(b﹣1)x+c=0的一个根;
⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的个数为()
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是( )
A. 30x﹣45≥300 B. 30x+45≥300 C. 30x﹣45≤300 D. 30x+45≤300
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于D,连接DC、DA、OA、OC,四边形OADC为平行四边形。
(1)求证:△BOC≌△CDA
(2)若AB=2,求阴影部分的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别位于反比例函数y=,y=在第一象限图象上的两点A,B,与原点O在同一直线上,且.
(1)求反比例函数y=的表达式;
(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com