精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AB∥CD,∠C=90°,AB=25,BC=24,若将该梯形沿BD折叠,点C恰好与腰AD上的点E重合,则AE的长为


  1. A.
    7
  2. B.
    8
  3. C.
    10
  4. D.
    12
A
分析:由将梯形ABCD沿BD折叠,点C恰好与腰AD上的点E重合,可得:BE=BC=24,∠BED=∠C=90°,又由AB=25,由勾股定理即可求得AE的长.
解答:∵将梯形ABCD沿BD折叠,点C恰好与腰AD上的点E重合,
∴由折叠的性质可得:BE=BC=24,∠BED=∠C=90°,
∴∠AEB=90°,
∵AB=25,
∴AE==7.
故选A.
点评:此题考查了折叠的性质以及勾股定理.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案