精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知梯形ABCD中,AB∥CD,∠ABC=90°,CD=1.
(1)若BC=3,AD=AB,求∠A的余弦值;
(2)连接BD,若△ADB与△BCD相似,设cotA=x,AB=y,求y关于x的函数关系式.
分析:(1)作DE⊥AB,在Rt△ADE中利用勾股定理求出AE的长,再根据三角函数的定义求出∠A的余弦值;
(2)易得△ADB∽△BCD,得到∠ADB=90°,根据正切求出BC=x,根据勾股定理得到DB关于x的关系式,再利用△ABD∽△BDC,列出关系式,即可得到y关于x的函数关系式.
解答:精英家教网解:(1)过点D作DE⊥AB,垂足为点E,
设AE=x,则AD=x+1.(11分)
根据题意,在Rt△ADE中,AD2=AE2+DE2
∴x2+9=(x+1)2,(1分)
解得x=4.(1分)
即AE=4,AD=5,
cos∠A=
AE
AD
=
4
5
;(1分)

(2)∵AB∥CD,
∴∠BDC=∠ABD精英家教网
∵∠ABC=90°,△ADB∽△BCD,
∴△ADB是直角三角形,且∠ADB=90°.(1分)
∴∠DBC=∠A,
在△BCD中,由CD=1,cot∠DBC=cotA=x得,BC=x,(1分)
从而DB=
x2+1

由△ABD∽△BDC得,
AB
BD
=
BD
DC

y
BD
=
BD
1

∴y=x2+1.
点评:此题考查了相似三角形的性质和判定及解直角三角形的知识,找到图形中的直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,则BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,点P从点A开始沿AB边向点B以3cm/s的速度移动,点Q从点B开始沿BC边向点C以1cm/s的速度移动,P,Q分别从A,B同时出发,当其中一精英家教网点到达终点时,另一点也随之停止.过Q作QD∥AB交AC于点D,连接PD,设运动时间为t秒时,四边形BQDP的面积为s.
(1)用t的代数式表示QD的长.
(2)求s关于t的函数解析式,并求出运动几秒梯形BQDP的面积最大?最大面积是多少?
(3)连接QP,在运动过程中,能否使△DPQ为等腰三角形?若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•遂宁)如图,已知等腰△ABC的面积为4cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为
3
3
 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解

(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
相等
相等
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.

查看答案和解析>>

同步练习册答案