【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y= 的图象交于点A(﹣1,n).
(1)求反比例函数y= 的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.
【答案】
(1)解:把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,
∴A点坐标为(﹣1,2),
把A(﹣1,2)代入y= 得k=﹣1×2=﹣2,
∴反比例函数的解析式为y=﹣
(2)解:过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,
∵点A的坐标为(﹣1,2),
∴B点坐标为(﹣1,0),C点坐标为(0,2)
∴当P在x轴上,其坐标为(﹣2,0);
当P点在y轴上,其坐标为(0,4);
∴点P的坐标为(﹣2,0)或(0,4).
【解析】(1)把点A的坐标代入一次函数y=﹣2x得解析式可求出点A的坐标,再把点A的坐标代入反比例函数y=可求出答案;
(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,可得B点坐标、C点坐标,然后分P点在x轴上和在y轴上求出其坐标.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列关系式中正确的是( )
A.ac>0
B.b+2a<0
C.b2﹣4ac>0
D.a﹣b+c<0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形中,,垂足为点,直线过点,且,点为线段上一点,连接,∠BCG与∠BCE的角平分线CM、CN分别交于点M、N,若,则=_________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A,B在数轴上对应的数分别用a,b表示,且(ab+100)2+|a﹣20|=0,P是数轴上的一个动点.
(1)在数轴上标出A、B的位置,并求出A、B之间的距离.
(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.
(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将连续的奇数1,3,5,7,…排成如图的数表,用如图所示的“十字框”可以框出5个数,这5个数之间将满足一定的关系,按照此方法,若“十字框”框出的5个数的和等于2015,则这5个数中最大数为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y1=x2+2x+m﹣5.
(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;
(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市实施居民用水阶梯价格制度,按年度用水量计算,将居民家庭全年用水量划分为三个阶梯,水价按阶梯递增:
第一阶梯:年用水量不超过200吨,每吨水价为3元;
第二阶梯:年用水量超过200吨但不超过300吨的部分,每吨水价为3. 5元;
第三阶梯:年用水量超过300吨的部分,每吨水价为6元.
(1)小明家2018年用水180吨,这一年应缴纳水费 元;
(2)小亮家2018年缴纳水费810元,则小亮家这一年用水多少吨?
(3)小红家2017年和2018年共用水600吨,共缴纳水费1950元,并且2018年的用水量超过2017年的用水量,则小红家2017年和2018年各用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.
(1)求∠AON的度数.
(2)写出∠DON的余角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com