精英家教网 > 初中数学 > 题目详情
如图,AC与BD相交于点O,DA⊥AC,DB⊥BC,AC=BD.说明OD=OC成立的理由.
分析:由DA⊥AC,DB⊥BC,得到∠A和∠B都为直角,在直角三角形ACD和BCD中,由已知的边AC=BD,再加上公共边DC,利用HL可得三角形ACD与三角形BCD全等,根据全等三角形的对应角相等,可得∠BDC=∠ACD,最后根据等角对等边可得证.
解答:证明:∵DA⊥AC,DB⊥BC(已知),
∴∠A=∠B=90°(垂直定义),
在Rt△ADC和Rt△BCD中,
AC=BD(已知)
DC=CD(公共边)

∴Rt△ADC≌Rt△BCD(HL),(4分)
∴∠BDC=∠ACD(全等三角形的对应角相等),
∴OD=OC(等角对等边).
点评:此题考查了全等三角形的判定与性质,垂直定义,以及等腰三角形的判定,直角三角形是特殊的三角形,其全等的方法可以用HL来判定,即直角边及斜边对应相等的两直角三角形全等,在证明边相等或角相等时,常常构造三角形全等来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,AC与BD相交于点P,若△ABC≌△DCB,则△ABP≌△DCP,理由是:
∵△ABC≌△DCB
∴AB=CD(全等三角形对应边相等)
∠A=
∠D

在△ABP和△DCP中
∠A=∠D
∠APB=
∠DPC
(对顶角相等)
AB=CD
∴△ABP≌△DCP  ( AAS )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,AC与BD相交于点O,已知OA=OC,OB=OD,则△AOB≌△COD的理由是
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC与BD相交于O,∠1=∠4,∠2=∠3,△ABC的周长为25cm,△AOD的周长为17cm,则AB=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC与BD相交于点O,AD=BC,∠D=∠C,试说明BD与AC相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC与BD相交于点O,有以下四个条件:
①OD=OC;②∠C=∠D;③AD=BC;④∠DAO=∠CBO.
从这四个条件中任选两个,能使△DAO≌△CBO的选法种数共有(  )

查看答案和解析>>

同步练习册答案