精英家教网 > 初中数学 > 题目详情

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为________cm2

16π
分析:设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),以及勾股定理即可求解.
解答:解:设AB于小圆切于点C,连接OC,OB.
∵AB于小圆切于点C,
∴OC⊥AB,
∴BC=AC=AB=×8=4cm.
∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2
又∵直角△OBC中,OB2=OC2+BC2
∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16πcm2
故答案是:16π.
点评:此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,已知AB=8,大圆半径为5,则小圆半径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•静安区二模)如图,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于B,大圆的弦BC⊥AB,过点C作大圆的切线交AB的延长线于D,OC交小圆于E
(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长y,yx之间的函数解析式,并写出定义域.
(3)△BCE能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP=1,MA=AB=BC,则△MBQ的面积为
3
15
8
3
15
8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5cm,小圆的半径为3cm,则弦AB的长为(  )

查看答案和解析>>

同步练习册答案