精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠C=2∠B,D是BC边上一点,且AD⊥AB,点E是线段BD的中点,连接AE.求证:BD=2AC.

证明:∵AD⊥AB,
∴∠BAD=90°,
∵点E是线段BD的中点,
∴BD=2BE=2AE=2DE,
∴∠B=∠BAE,
∴∠AED=∠B+∠BAE=2∠B,
∵∠C=2∠B,
∴∠C=∠AEC,
∴AE=AC,
∴BD=2AC.
分析:根据直角三角形斜边上的中线性质求出BD=2AE=2BE=2DE,根据等腰三角形的性质推出∠B=∠BAE,推出∠C=∠AEC=2∠B,得到AC=AE即可.
点评:本题主要考查对等腰三角形的性质和判定,三角形的外角性质,直角三角形斜边上的中线性质等知识点的理解和掌握,能推出AE=AC是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案