精英家教网 > 初中数学 > 题目详情
如图,已 知直线 交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.
(1)              (2)
(3)当时,
时,S=
时,S=       (4)
(1)可先根据AB所在直线的解析式求出A,B两点的坐标,即可得出OA、OB的长.过D作DM⊥y轴于M,则△ADM≌△BAO,由此可得出MD、MA的长,也就能求出D的坐标,同理可求出C的坐标;
(2)可根据A、C、D三点的坐标,用待定系数法求出抛物线的解析式;
(3)要分三种情况进行讨论:
①当F点在A′B′之间时,即当0<t≤1时,此时S为三角形FBG的面积,可用正方形的速度求出AB′的长,即可求出B′F的长,然后根据∠GFB′的正切值求出B′G的长,即可得出关于S、t的函数关系式.
②当A′在x轴下方,但C′在x轴上方或x轴上时,即当1<t≤2时,S为梯形A′GB′H的面积,可参照①的方法求出A′G和B′H的长,那么梯形的上下底就可求出,梯形的高为A′B′即正方形的边长,可根据梯形的面积计算公式得出关于S、t的函数关系式.
③当D′逐渐移动到x轴的过程中,即当2<t≤3时,此时S为五边形A′B′C′HG的面积,S=正方形A′B′C′D′的面积-三角形GHD′的面积.可据此来列关于S,t的函数关系式;
(4)CE扫过的图形是个平行四边形,经过关系不难发现这个平行四边形的面积实际上就是矩形BCD′A′的面积.可通过求矩形的面积来求出CE扫过的面积
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.

(1)用m的代数式表示点A、D的坐标;
(2)求这个二次函数关系式;
(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.
(1)求这个二次函数的解析式;
(2)点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;
(3)在(2)的情况下,求四边形ACQD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现要保证每天盈利6000元,同时又要让顾客尽可能多得到实惠,那么每千克应涨价多少元?
(2)若该批发商单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一边长为60cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为576cm2,那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)如图2,若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分正好折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为2800cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于的二次函数,下列说法正确的是(    )
A.图象的开口向上B.图象与轴的交点坐标为(0,2)
C.图象的顶点坐标是(-1,2)D.当时,的增大而减小

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

要从抛物线的图象得到的图象,则抛物线必须 ( )
A.向上平移1个单位;B.向下平移1个单位;
C.向左平移1个单位;D.向右平移1个单位.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的顶点坐标是______________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的顶点坐标是         

查看答案和解析>>

同步练习册答案