精英家教网 > 初中数学 > 题目详情

【题目】在《九章算术》中有求三角形面积公式底乘高的一半,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(年)提出了三斜求积术,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前公元前年)得出的,故我国称这个公式为海伦一秦九韶公式.它的表达为:三角形三边长分别为,则三角形的面积(公式里的为半周长即周长的一半).

请利用海伦一秦九韶公式解决以下问题:

)三边长分别为的三角形面积为__________.

)四边形中,,四边形的面积为__________.

)五边形中,,五边形的面积为__________.

【答案】

【解析】试题分析:(1)直接代入计算即可;

(2)连接AC,并示得AC的长度,再计算的面积,再得出四边形的面积;

(3)将五边形分成四个三角形,再分别求出这四个三角形的面积,则求得五边形的面积.

试题解析:

)连接

中,

)连接

中,

中,

,则

中,

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.

(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________/个;

(2)求出甲厂的印刷费y与证书数量x的函数关系式,并求出其证书印刷单价;

(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点AD为圆心,以大于的长为半径在AD的两侧作弧,交于两点MN;第二步,连结MN,分别交ABAC于点EF;第三步,连结DEDF..若BD=6AF=4CD=3,则BE的长是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=kx+b与反比例函数y=(x0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.

(1)求直线AB的解析式;

(2)若点Px轴上一动点,当△COD与△ADP相似时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,点的坐标为,连接

)求证:是等边三角形.

)点在线段的延长线上,连接,作的垂直平分线,垂足为点,并与轴交于点,分别连接

①如图,若,直接写出的度数.

②若点在线段的延长线上运动(与点不重合),的度数是否变化?若变化,请说明理由;若不变,求出的度数.

)在()的条件下,若点从点出发在的延长线上匀速运动,速度为每秒个单位长度,交于点,设的面积为的面积为,运动时间为秒时.求关于的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,双曲线y与直线yaxb相交于点A15),Bm,-2).

⑴分别求双曲线、直线的解析式;

⑵直接写出不等式axb的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1:y1=x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.

1)求两直线交点D的坐标;

2)求ABD的面积;
3)根据图象直接写出y1y2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现定义一种新运算:“※”,使得a※b=4ab

(1)求4※7的值;

(2)求x※x+2※x﹣2※4=0x的值;

(3)不论x是什么数,总有a※x=x,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是

A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球

B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨

C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖

D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上

查看答案和解析>>

同步练习册答案