【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=2.Rt△AB′C′可以看作是由Rt△ABC绕A点逆时针方向旋转60°得到的,求线段 B′C的长.
【答案】
【解析】试题分析:作B′E⊥AC交CA的延长线于E,首先求出AC的长度,根据旋转图形的性质求出AE的长度,然后根据RtAB′E的勾股定理求出B′E的长度,最后根据Rt△CEB′的勾股定理得出答案.
试题解析:如图,作B′E⊥AC交CA的延长线于E, ∵∠ACB=90°,∠BAC=60°,AB=2, ∴∠ABC=30°, ∴AC=AB=1,
∵Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,
∴AB=AB′=2,∠B′AB=60°, ∴∠EAB′=180°﹣∠B′AB﹣∠BAC=60°, ∵B′E⊥EC, ∴∠AB′E=30°,
∴AE=1, 在Rt△AB′E中,∵AE=1,AB′=2, ∴B′E==, ∴EC=AE+AC=2,
在Rt△CEB′中,∵B′E=,CE=2, ∴B′C==.
科目:初中数学 来源: 题型:
【题目】为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列
问题:
(1)求图②中“科技类”所在扇形的圆心角α的度数
(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?
(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校学生会为了解本校初中学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查.在确定调查对象时,大家提出以下几种方案:A.对各班班长进行调查;B.对某班的全体学生进行调查;C.从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会将收集到的数据整理后绘制成如图所示的条形统计图.
(1)为了使收集到的数据具有代表性.学生会在确定调查对象时应选择方案________ (填A,B或C);
(2)被调查的学生每天做作业所用时间的众数为________h;
(3)根据以上统计结果,估计该校900名初中学生中每天做作业用1.5 h的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.
(1)求甲、乙两个班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:线段、、;
求作:△ABC,使, , ;
【答案】答案见解析
【解析】试题分析:先画出与相等的角,再画出的长,连接,则即为所求三角形.
试题解析:如图所示:①先画射线BC,
②以α的顶点为圆心,任意长为半径画弧,分别交α的两边交于为A′,C′;
③以相同长度为半径,B为圆心,画弧,交BC于点F,以F为圆心,C′A′为半径画弧,交于点E;
④在BF上取点C,使CB=a,以B为圆心,c为半径画圆交BE的延长线于点A,连接AC,
结论:△ABC即为所求三角形.
【题型】解答题
【结束】
15
【题目】已知:线段, ,求作: ,使, .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD;请证明你的结论.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41, =1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=10,∠B=60°,∠C=45°,则点A到BC的距离是( )
A.10﹣5
B.5+5
C.15﹣5
D.15﹣10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB,CD是⊙O的两条互相垂直的直径,点O1 , O2 , O3 , O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为( )
A.8
B.4
C.4π+4
D.4π﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:
(1)甲、乙两组工作一天,商店应各付多少元?
(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com