精英家教网 > 初中数学 > 题目详情

已知二次函数的图象与轴交于两点,与轴交于点,点的坐标为,且当时二次函数的函数值相等.

)求实数的值.

)如图,动点同时从点出发,其中点以每秒个单位长度的速度沿边向终点运动,点以每秒个单位长度的速度沿射线方向运动,当点停止运动时,点随之停止运动.设运动时间为秒.连接,将沿翻折,使点落在点处,得到

①是否存在某一时刻,使得为直角三角形?若存在,求出的值;若不存在,请说明理由.

②设重叠部分的面积为,求关于的函数关系式.

练习册系列答案
相关习题

科目:初中数学 来源:2017-2018学年七年级数学浙教版下册单元测试卷 第4章因式分解 题型:解答题

如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:人教版数学九年级上册_第23章_旋转_单元检测试卷 题型:填空题

先将一矩形置于直角坐标系中,使点与坐标系中原点重合,边分别落在轴、轴上(如图),再将此矩形在坐标平面内按逆时针方向绕原点旋转(如图),则图中点的坐标为________.

查看答案和解析>>

科目:初中数学 来源:人教版数学九年级上册_第23章_旋转_单元检测试卷 题型:单选题

如图所示,正方形OABC的边长为2,则该正方形绕点O逆时针旋转90°后,点B的坐标为 ( )

A. (-2,2) B. (2,-2) C. (-2,-2) D. (0,

查看答案和解析>>

科目:初中数学 来源:人教版初中数学九年级上册 第二十二章 二次函数压轴专题试卷 题型:解答题

在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:

若b'=,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).

(1)①点(﹣,1)的限变点的坐标是   

②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=图象上某一个点的限交点,这个点是   

(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;

(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥m或b'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.

查看答案和解析>>

科目:初中数学 来源:人教版初中数学九年级上册 第二十二章 二次函数压轴专题试卷 题型:解答题

如图1,抛物线轴交于点和点,与轴交于点,抛物线的顶点为轴于点.将抛物线平移后得到顶点为且对称轴为直的抛物线

(1)求抛物线的解析式;

(2)如图2,在直线上是否存在点,使是等腰三角形?若存在,请求出所有点的坐标:若不存在,请说明理由;

(3)点为抛物线上一动点,过点轴的平行线交抛物线于点,点关于直线的对称点为,若以为顶点的三角形与全等,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源:人教版初中数学九年级上册 第二十二章 二次函数压轴专题试卷 题型:解答题

如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.

(1)求抛物线C1的表达式;

(2)直接用含t的代数式表示线段MN的长;

(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;

(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:人教版数学七年级上册_第四章_几何图形初步_单元测试 题型:填空题

生活中,要在墙上钉牢一根木条,至少要钉________颗钉子,用所学数学知识理解应是________.

查看答案和解析>>

科目:初中数学 来源:江苏省泰兴市黄桥东区域2019届九年级上学期期中考试数学试卷 题型:填空题

如图,在等腰中,,点在以斜边为直径的半圆上,的中点.当点沿半圆从点运动至点时,点运动的路径长是________.

查看答案和解析>>

同步练习册答案