精英家教网 > 初中数学 > 题目详情
(2010•烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

【答案】分析:(1)抛物线y=x2+bx-3a过点A(1,0),B(0,-3),把两点代入联立解方程组求得a、b.
(2)令y=0,得x2+2x-3=0,可以解得C点坐标,过点P作PD⊥y轴,垂足为D,可证PD=BD,进而求出P点坐标.
(3)由(2)知,BC⊥BP当BP为直角梯形一底时,由图象可知点Q不可能在抛物线上,若BC为直角梯形一底,BP为直角梯形腰时,可求出直线PQ的解析式,直线与抛物线联立,求得P坐标.
解答:解:(1)把A(1,0),B(0,-3)代入y=x2+bx-3a,

解得
∴抛物线的解析式为y=x2+2x-3;

(2)过点P作PD⊥y轴,垂足为D,
令y=0,得x2+2x-3=0,
解得x1=-3,x2=1,
∴点C(-3,0),
∵B(0,-3),
∴△BOC为等腰直角三角形,
∴∠CBO=45°,
∵PB⊥BC,
∴∠PBD=45°,
∴PD=BD.
∴可设点P(x,-3+x),
则有-3+x=x2+2x-3,
∴x=-1,
∴P点坐标为(-1,-4);

(3)由(2)知,BC⊥BP,
(i)当BP为直角梯形一底时,由图象可知点Q不可能在抛物线上;
(ii)当BC为直角梯形一底,BP为直角梯形腰时,
∵B(0,-3),C(-3,0),
∴直线BC的解析式为y=-x-3,
∵直线PQ∥BC,
∴直线PQ的解析式为y=-x+b,
又P(-1,-4),
∴PQ的解析式为:y=-x-5,
联立方程组得
解得x1=-1,x2=-2,
∴x=-2,y=-3,
即点Q(-2,-3),
∴符合条件的点Q的坐标为(-2,-3).
点评:本题是二次函数的综合题,涉及的知识面很广,会求抛物线的解析式,直线和抛物线的交点问题.此题有点繁琐.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2010•烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2010•烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的平移》(02)(解析版) 题型:解答题

(2010•烟台)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;
(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年山东省烟台市中考数学试卷(解析版) 题型:选择题

(2010•烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )

A.AB2=BC•BD
B.AB2=AC•BD
C.AB•AD=BD•BC
D.AB•AD=AD•CD

查看答案和解析>>

同步练习册答案