精英家教网 > 初中数学 > 题目详情
如图,抛物线y1=-
3
4
x2+3与x轴交于A、B两点,与直线y2=-
3
4
x+b相交于B、C两点.
(1)求直线BC的解析式和点C的坐标;
(2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是
-1≤x≤2
-1≤x≤2
分析:(1)令y=0求解得到点B的坐标,把点B的坐标代入直线解析式求出b的值,再与直线联立求解得到点C的坐标;
(2)根据函数图象找出抛物线在直线上方部分的x的取值范围即可.
解答:解:(1)令y=0,则-
3
4
x2+3=0,
解得x1=-2,x2=2,
∴点B的坐标为(2,0),
∴-
3
4
×2+b=0,
解得b=
3
2

∴直线BC的解析式为y=-
3
4
x+
3
2

由-
3
4
x2+3=-
3
4
x+
3
2
,即3x2-x-6=0,
解得x1=-1,x2=2(舍去),
∴点C的坐标为(-1,
9
4
);

(2)由图可知,y1≥y2时,-1≤x≤2.
故答案为:-1≤x≤2.
点评:本题考查了二次函数与不等式,待定系数法求一次函数解析式,抛物线与x轴的交点问题,利用数形结合的思想求解是此类题目解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,则图中阴影部分的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=a(x-m)2与y2关于y轴对称,顶点分别为B、A,y1与y轴的交点为C.若由A,B,C组成的三角形中,tan∠ABC=2.求:
(1)a与m满足的关系式;
(2)如图,动点Q、M分别在y1和y2上,N、P在x轴上,构成矩形MNPQ,当a为1时,请问:
①Q点坐标是多少时,矩形MNPQ的周长最短?
②若E为MQ与y轴的交点,是否存在这样的矩形,使得△CEQ与△QPB相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,抛物线y1=x2-1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.
(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=ax2+bx和直线y2=kx+m相交于点(-2,0)和(1,3),则当y2<y1,时,x的取值范围是
x>1或x<-2
x>1或x<-2

查看答案和解析>>

同步练习册答案