精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则BCG的周长为_____

【答案】+3.

【解析】

根据面积之比得出BGC的面积等于正方形面积的,进而依据BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.

∵阴影部分的面积与正方形ABCD的面积之比为2:3,

∴阴影部分的面积为×9=6,

∴空白部分的面积为9-6=3,

CE=DF,BC=CD,BCE=CDF=90°,可得BCE≌△CDF,

∴△BCG的面积与四边形DEGF的面积相等,均为×3=

BG=a,CG=b,则ab=

又∵a2+b2=32

a2+2ab+b2=9+6=15,

即(a+b)2=15,

a+b=,即BG+CG=

∴△BCG的周长=+3,

故答案为:+3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列等式:

ab)(a+b)=a2b2

ab)(a2+ab+b2)=a3b3

ab)(a3+a2b+ab2+b3)=a4b4

利用你的发现的规律解决下列问题

1)(ab)(a4+a3b+a2b2+ab3+b4)=   (直接填空);

2)(ab)(an1+an2b+an3b2…+abn2+bn1)=   (直接填空);

3)利用(2)中得出的结论求62019+62018+…+62+6+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)有理数在数轴上的对应点如图所示,化简代数式:

2)哈市某垃圾处理场一周处理生活垃圾任务为210吨,计划每天处理30吨,由于各种原因,实际每天处理量与计划相比有出入,某周七天的实际处理情况记录如下:

+6-3+4-1+2-50

垃圾场这一周实际处理生活垃圾是多少吨?

若该垃圾场实行计量工资,每处理一吨生活垃圾给300元,同时又规定超额处理一吨垃圾另外奖100元,完不成任务的少处理一吨另外扣100元,那么该场工人这一周的工资总额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是轮滑场地的截面示意图,平台ABx轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1h=5,M,A的水平距离是vt米.

(1)求k,并用t表示h;

(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求yx的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;

(3)若运动员甲、乙同时从A处飞出,速度分别是5/秒、v/秒.当甲距x1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC与△A'B'C在平面直角坐标系中的位置如图.

1)分别写出BB'的坐标:B______B______

2)若点Pab)是△ABC内部一点,则平移后△A'B'C内的对应点P′的坐标为______

3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十六两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了16两(袋子重量忽略不计),问黄金、白银每枚各重多少两?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】幸福是奋斗出来的,在数轴上,若CA的距离刚好是3,则C点叫做A幸福点,若CA、B的距离之和为6,则C叫做A、B幸福中心

(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是   

(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是   (填一个即可);

(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是AB的幸福中心?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BCx轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:

(1)k的值;

(2)求点A的坐标;(用含m代数式表示)

(3)当∠ABD=45°时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,建筑物C在观测点A的北偏东65°方向上,从观测点A出发向南偏东40°方向走了130m到达观测点B,此时测得建筑物C在观测点B的北偏东20°方向上,求观测点B与建筑物C之间的距离.(结果精确到0.1m.参考数据:≈1.73)

查看答案和解析>>

同步练习册答案